Metamath Proof Explorer


Theorem volioc

Description: The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion volioc ABABvolAB=BA

Proof

Step Hyp Ref Expression
1 vol0 vol=0
2 oveq2 A=BAA=AB
3 2 eqcomd A=BAB=AA
4 leid AAA
5 rexr AA*
6 ioc0 A*A*AA=AA
7 5 5 6 syl2anc AAA=AA
8 4 7 mpbird AAA=
9 3 8 sylan9eqr AA=BAB=
10 9 fveq2d AA=BvolAB=vol
11 eqcom A=BB=A
12 11 biimpi A=BB=A
13 12 adantl AA=BB=A
14 recn AA
15 14 adantr AA=BA
16 13 15 eqeltrd AA=BB
17 16 13 subeq0bd AA=BBA=0
18 1 10 17 3eqtr4a AA=BvolAB=BA
19 18 3ad2antl1 ABABA=BvolAB=BA
20 simpl1 ABAB¬A=BA
21 simpl2 ABAB¬A=BB
22 simpl3 ABAB¬A=BAB
23 eqcom B=AA=B
24 23 biimpi B=AA=B
25 24 necon3bi ¬A=BBA
26 25 adantl ABAB¬A=BBA
27 20 21 22 26 leneltd ABAB¬A=BA<B
28 5 3ad2ant1 ABA<BA*
29 rexr BB*
30 29 3ad2ant2 ABA<BB*
31 simp3 ABA<BA<B
32 ioounsn A*B*A<BABB=AB
33 28 30 31 32 syl3anc ABA<BABB=AB
34 33 eqcomd ABA<BAB=ABB
35 34 fveq2d ABA<BvolAB=volABB
36 ioombl ABdomvol
37 36 a1i ABA<BABdomvol
38 snmbl BBdomvol
39 38 3ad2ant2 ABA<BBdomvol
40 ubioo ¬BAB
41 disjsn ABB=¬BAB
42 40 41 mpbir ABB=
43 42 a1i ABA<BABB=
44 ioovolcl ABvolAB
45 44 3adant3 ABA<BvolAB
46 volsn BvolB=0
47 0red B0
48 46 47 eqeltrd BvolB
49 48 3ad2ant2 ABA<BvolB
50 volun ABdomvolBdomvolABB=volABvolBvolABB=volAB+volB
51 37 39 43 45 49 50 syl32anc ABA<BvolABB=volAB+volB
52 simp1 ABA<BA
53 simp2 ABA<BB
54 52 53 31 ltled ABA<BAB
55 volioo ABABvolAB=BA
56 52 53 54 55 syl3anc ABA<BvolAB=BA
57 46 3ad2ant2 ABA<BvolB=0
58 56 57 oveq12d ABA<BvolAB+volB=B-A+0
59 53 recnd ABA<BB
60 14 3ad2ant1 ABA<BA
61 59 60 subcld ABA<BBA
62 61 addridd ABA<BB-A+0=BA
63 58 62 eqtrd ABA<BvolAB+volB=BA
64 35 51 63 3eqtrd ABA<BvolAB=BA
65 20 21 27 64 syl3anc ABAB¬A=BvolAB=BA
66 19 65 pm2.61dan ABABvolAB=BA