Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem5.1 |
⊢ 𝑅 We 𝐴 |
2 |
|
wfrlem5.2 |
⊢ 𝑅 Se 𝐴 |
3 |
|
wfrlem5.3 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
|
vex |
⊢ 𝑢 ∈ V |
6 |
4 5
|
breldm |
⊢ ( 𝑥 𝑔 𝑢 → 𝑥 ∈ dom 𝑔 ) |
7 |
|
vex |
⊢ 𝑣 ∈ V |
8 |
4 7
|
breldm |
⊢ ( 𝑥 ℎ 𝑣 → 𝑥 ∈ dom ℎ ) |
9 |
6 8
|
anim12i |
⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → ( 𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ ) ) |
10 |
|
elin |
⊢ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ↔ ( 𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) |
12 |
|
anandi |
⊢ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ∧ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) ) |
13 |
5
|
brresi |
⊢ ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ↔ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ) |
14 |
7
|
brresi |
⊢ ( 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ↔ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) |
15 |
13 14
|
anbi12i |
⊢ ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ∧ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) ) |
16 |
12 15
|
sylbb2 |
⊢ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) → ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
17 |
11 16
|
mpancom |
⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
18 |
3
|
wfrlem3 |
⊢ ( 𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴 ) |
19 |
|
ssinss1 |
⊢ ( dom 𝑔 ⊆ 𝐴 → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
20 |
|
wess |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 We 𝐴 → 𝑅 We ( dom 𝑔 ∩ dom ℎ ) ) ) |
21 |
1 20
|
mpi |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → 𝑅 We ( dom 𝑔 ∩ dom ℎ ) ) |
22 |
|
sess2 |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 Se 𝐴 → 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ) |
23 |
2 22
|
mpi |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) |
24 |
21 23
|
jca |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 We ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ) |
25 |
18 19 24
|
3syl |
⊢ ( 𝑔 ∈ 𝐵 → ( 𝑅 We ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( 𝑅 We ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ) |
27 |
3
|
wfrlem4 |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
28 |
3
|
wfrlem4 |
⊢ ( ( ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ∧ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) ) |
29 |
28
|
ancoms |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ∧ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) ) |
30 |
|
incom |
⊢ ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) |
31 |
30
|
reseq2i |
⊢ ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) |
32 |
31
|
fneq1i |
⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ↔ ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ) |
33 |
30
|
fneq2i |
⊢ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ↔ ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ) |
34 |
32 33
|
bitri |
⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ↔ ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ) |
35 |
31
|
fveq1i |
⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) |
36 |
|
predeq2 |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) → Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) |
37 |
30 36
|
ax-mp |
⊢ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) |
38 |
31 37
|
reseq12i |
⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) |
39 |
38
|
fveq2i |
⊢ ( 𝐹 ‘ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) |
40 |
35 39
|
eqeq12i |
⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ↔ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) |
41 |
30 40
|
raleqbii |
⊢ ( ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ↔ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) |
42 |
34 41
|
anbi12i |
⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ↔ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ∧ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) ) |
43 |
29 42
|
sylibr |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
44 |
|
wfr3g |
⊢ ( ( ( 𝑅 We ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ∧ ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ∧ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
45 |
26 27 43 44
|
syl3anc |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
46 |
45
|
breqd |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ↔ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
47 |
46
|
biimprd |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 → 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
48 |
3
|
wfrlem2 |
⊢ ( 𝑔 ∈ 𝐵 → Fun 𝑔 ) |
49 |
|
funres |
⊢ ( Fun 𝑔 → Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
50 |
|
dffun2 |
⊢ ( Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↔ ( Rel ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ∧ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
51 |
50
|
simprbi |
⊢ ( Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) → ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
52 |
|
2sp |
⊢ ( ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
53 |
52
|
sps |
⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
54 |
48 49 51 53
|
4syl |
⊢ ( 𝑔 ∈ 𝐵 → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
56 |
47 55
|
sylan2d |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
57 |
17 56
|
syl5 |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |