Metamath Proof Explorer


Theorem wfrlem5

Description: Lemma for well-founded recursion. The values of two acceptable functions agree within their domains. (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfrlem5.1 R We A
wfrlem5.2 R Se A
wfrlem5.3 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
Assertion wfrlem5 g B h B x g u x h v u = v

Proof

Step Hyp Ref Expression
1 wfrlem5.1 R We A
2 wfrlem5.2 R Se A
3 wfrlem5.3 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
4 vex x V
5 vex u V
6 4 5 breldm x g u x dom g
7 vex v V
8 4 7 breldm x h v x dom h
9 6 8 anim12i x g u x h v x dom g x dom h
10 elin x dom g dom h x dom g x dom h
11 9 10 sylibr x g u x h v x dom g dom h
12 anandi x dom g dom h x g u x h v x dom g dom h x g u x dom g dom h x h v
13 5 brresi x g dom g dom h u x dom g dom h x g u
14 7 brresi x h dom g dom h v x dom g dom h x h v
15 13 14 anbi12i x g dom g dom h u x h dom g dom h v x dom g dom h x g u x dom g dom h x h v
16 12 15 sylbb2 x dom g dom h x g u x h v x g dom g dom h u x h dom g dom h v
17 11 16 mpancom x g u x h v x g dom g dom h u x h dom g dom h v
18 3 wfrlem3 g B dom g A
19 ssinss1 dom g A dom g dom h A
20 wess dom g dom h A R We A R We dom g dom h
21 1 20 mpi dom g dom h A R We dom g dom h
22 sess2 dom g dom h A R Se A R Se dom g dom h
23 2 22 mpi dom g dom h A R Se dom g dom h
24 21 23 jca dom g dom h A R We dom g dom h R Se dom g dom h
25 18 19 24 3syl g B R We dom g dom h R Se dom g dom h
26 25 adantr g B h B R We dom g dom h R Se dom g dom h
27 3 wfrlem4 g B h B g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = F g dom g dom h Pred R dom g dom h a
28 3 wfrlem4 h B g B h dom h dom g Fn dom h dom g a dom h dom g h dom h dom g a = F h dom h dom g Pred R dom h dom g a
29 28 ancoms g B h B h dom h dom g Fn dom h dom g a dom h dom g h dom h dom g a = F h dom h dom g Pred R dom h dom g a
30 incom dom g dom h = dom h dom g
31 30 reseq2i h dom g dom h = h dom h dom g
32 31 fneq1i h dom g dom h Fn dom g dom h h dom h dom g Fn dom g dom h
33 30 fneq2i h dom h dom g Fn dom g dom h h dom h dom g Fn dom h dom g
34 32 33 bitri h dom g dom h Fn dom g dom h h dom h dom g Fn dom h dom g
35 31 fveq1i h dom g dom h a = h dom h dom g a
36 predeq2 dom g dom h = dom h dom g Pred R dom g dom h a = Pred R dom h dom g a
37 30 36 ax-mp Pred R dom g dom h a = Pred R dom h dom g a
38 31 37 reseq12i h dom g dom h Pred R dom g dom h a = h dom h dom g Pred R dom h dom g a
39 38 fveq2i F h dom g dom h Pred R dom g dom h a = F h dom h dom g Pred R dom h dom g a
40 35 39 eqeq12i h dom g dom h a = F h dom g dom h Pred R dom g dom h a h dom h dom g a = F h dom h dom g Pred R dom h dom g a
41 30 40 raleqbii a dom g dom h h dom g dom h a = F h dom g dom h Pred R dom g dom h a a dom h dom g h dom h dom g a = F h dom h dom g Pred R dom h dom g a
42 34 41 anbi12i h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = F h dom g dom h Pred R dom g dom h a h dom h dom g Fn dom h dom g a dom h dom g h dom h dom g a = F h dom h dom g Pred R dom h dom g a
43 29 42 sylibr g B h B h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = F h dom g dom h Pred R dom g dom h a
44 wfr3g R We dom g dom h R Se dom g dom h g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = F g dom g dom h Pred R dom g dom h a h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = F h dom g dom h Pred R dom g dom h a g dom g dom h = h dom g dom h
45 26 27 43 44 syl3anc g B h B g dom g dom h = h dom g dom h
46 45 breqd g B h B x g dom g dom h v x h dom g dom h v
47 46 biimprd g B h B x h dom g dom h v x g dom g dom h v
48 3 wfrlem2 g B Fun g
49 funres Fun g Fun g dom g dom h
50 dffun2 Fun g dom g dom h Rel g dom g dom h x u v x g dom g dom h u x g dom g dom h v u = v
51 50 simprbi Fun g dom g dom h x u v x g dom g dom h u x g dom g dom h v u = v
52 2sp u v x g dom g dom h u x g dom g dom h v u = v x g dom g dom h u x g dom g dom h v u = v
53 52 sps x u v x g dom g dom h u x g dom g dom h v u = v x g dom g dom h u x g dom g dom h v u = v
54 48 49 51 53 4syl g B x g dom g dom h u x g dom g dom h v u = v
55 54 adantr g B h B x g dom g dom h u x g dom g dom h v u = v
56 47 55 sylan2d g B h B x g dom g dom h u x h dom g dom h v u = v
57 17 56 syl5 g B h B x g u x h v u = v