Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem5.1 |
|- R We A |
2 |
|
wfrlem5.2 |
|- R Se A |
3 |
|
wfrlem5.3 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } |
4 |
|
vex |
|- x e. _V |
5 |
|
vex |
|- u e. _V |
6 |
4 5
|
breldm |
|- ( x g u -> x e. dom g ) |
7 |
|
vex |
|- v e. _V |
8 |
4 7
|
breldm |
|- ( x h v -> x e. dom h ) |
9 |
6 8
|
anim12i |
|- ( ( x g u /\ x h v ) -> ( x e. dom g /\ x e. dom h ) ) |
10 |
|
elin |
|- ( x e. ( dom g i^i dom h ) <-> ( x e. dom g /\ x e. dom h ) ) |
11 |
9 10
|
sylibr |
|- ( ( x g u /\ x h v ) -> x e. ( dom g i^i dom h ) ) |
12 |
|
anandi |
|- ( ( x e. ( dom g i^i dom h ) /\ ( x g u /\ x h v ) ) <-> ( ( x e. ( dom g i^i dom h ) /\ x g u ) /\ ( x e. ( dom g i^i dom h ) /\ x h v ) ) ) |
13 |
5
|
brresi |
|- ( x ( g |` ( dom g i^i dom h ) ) u <-> ( x e. ( dom g i^i dom h ) /\ x g u ) ) |
14 |
7
|
brresi |
|- ( x ( h |` ( dom g i^i dom h ) ) v <-> ( x e. ( dom g i^i dom h ) /\ x h v ) ) |
15 |
13 14
|
anbi12i |
|- ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) <-> ( ( x e. ( dom g i^i dom h ) /\ x g u ) /\ ( x e. ( dom g i^i dom h ) /\ x h v ) ) ) |
16 |
12 15
|
sylbb2 |
|- ( ( x e. ( dom g i^i dom h ) /\ ( x g u /\ x h v ) ) -> ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) ) |
17 |
11 16
|
mpancom |
|- ( ( x g u /\ x h v ) -> ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) ) |
18 |
3
|
wfrlem3 |
|- ( g e. B -> dom g C_ A ) |
19 |
|
ssinss1 |
|- ( dom g C_ A -> ( dom g i^i dom h ) C_ A ) |
20 |
|
wess |
|- ( ( dom g i^i dom h ) C_ A -> ( R We A -> R We ( dom g i^i dom h ) ) ) |
21 |
1 20
|
mpi |
|- ( ( dom g i^i dom h ) C_ A -> R We ( dom g i^i dom h ) ) |
22 |
|
sess2 |
|- ( ( dom g i^i dom h ) C_ A -> ( R Se A -> R Se ( dom g i^i dom h ) ) ) |
23 |
2 22
|
mpi |
|- ( ( dom g i^i dom h ) C_ A -> R Se ( dom g i^i dom h ) ) |
24 |
21 23
|
jca |
|- ( ( dom g i^i dom h ) C_ A -> ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) ) |
25 |
18 19 24
|
3syl |
|- ( g e. B -> ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) ) |
26 |
25
|
adantr |
|- ( ( g e. B /\ h e. B ) -> ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) ) |
27 |
3
|
wfrlem4 |
|- ( ( g e. B /\ h e. B ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
28 |
3
|
wfrlem4 |
|- ( ( h e. B /\ g e. B ) -> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) |
29 |
28
|
ancoms |
|- ( ( g e. B /\ h e. B ) -> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) |
30 |
|
incom |
|- ( dom g i^i dom h ) = ( dom h i^i dom g ) |
31 |
30
|
reseq2i |
|- ( h |` ( dom g i^i dom h ) ) = ( h |` ( dom h i^i dom g ) ) |
32 |
31
|
fneq1i |
|- ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom g i^i dom h ) ) |
33 |
30
|
fneq2i |
|- ( ( h |` ( dom h i^i dom g ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) ) |
34 |
32 33
|
bitri |
|- ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) ) |
35 |
31
|
fveq1i |
|- ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( ( h |` ( dom h i^i dom g ) ) ` a ) |
36 |
|
predeq2 |
|- ( ( dom g i^i dom h ) = ( dom h i^i dom g ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , ( dom h i^i dom g ) , a ) ) |
37 |
30 36
|
ax-mp |
|- Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , ( dom h i^i dom g ) , a ) |
38 |
31 37
|
reseq12i |
|- ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) |
39 |
38
|
fveq2i |
|- ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) |
40 |
35 39
|
eqeq12i |
|- ( ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) <-> ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) |
41 |
30 40
|
raleqbii |
|- ( A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) <-> A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) |
42 |
34 41
|
anbi12i |
|- ( ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) <-> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) |
43 |
29 42
|
sylibr |
|- ( ( g e. B /\ h e. B ) -> ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
44 |
|
wfr3g |
|- ( ( ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) /\ ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) /\ ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) -> ( g |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) ) |
45 |
26 27 43 44
|
syl3anc |
|- ( ( g e. B /\ h e. B ) -> ( g |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) ) |
46 |
45
|
breqd |
|- ( ( g e. B /\ h e. B ) -> ( x ( g |` ( dom g i^i dom h ) ) v <-> x ( h |` ( dom g i^i dom h ) ) v ) ) |
47 |
46
|
biimprd |
|- ( ( g e. B /\ h e. B ) -> ( x ( h |` ( dom g i^i dom h ) ) v -> x ( g |` ( dom g i^i dom h ) ) v ) ) |
48 |
3
|
wfrlem2 |
|- ( g e. B -> Fun g ) |
49 |
|
funres |
|- ( Fun g -> Fun ( g |` ( dom g i^i dom h ) ) ) |
50 |
|
dffun2 |
|- ( Fun ( g |` ( dom g i^i dom h ) ) <-> ( Rel ( g |` ( dom g i^i dom h ) ) /\ A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) ) |
51 |
50
|
simprbi |
|- ( Fun ( g |` ( dom g i^i dom h ) ) -> A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
52 |
|
2sp |
|- ( A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
53 |
52
|
sps |
|- ( A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
54 |
48 49 51 53
|
4syl |
|- ( g e. B -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
55 |
54
|
adantr |
|- ( ( g e. B /\ h e. B ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
56 |
47 55
|
sylan2d |
|- ( ( g e. B /\ h e. B ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
57 |
17 56
|
syl5 |
|- ( ( g e. B /\ h e. B ) -> ( ( x g u /\ x h v ) -> u = v ) ) |