| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 < 𝐵 ↔ 𝑧 < 𝐵 ) ) |
| 2 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 < 𝑦 ↔ 𝑧 < 𝑦 ) ) |
| 3 |
2
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 5 |
4
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 6 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
| 7 |
|
pm2.27 |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 8 |
7
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 9 |
|
pnfnlt |
⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) |
| 10 |
|
breq1 |
⊢ ( 𝑥 = +∞ → ( 𝑥 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 11 |
10
|
notbid |
⊢ ( 𝑥 = +∞ → ( ¬ 𝑥 < 𝐵 ↔ ¬ +∞ < 𝐵 ) ) |
| 12 |
9 11
|
imbitrrid |
⊢ ( 𝑥 = +∞ → ( 𝐵 ∈ ℝ* → ¬ 𝑥 < 𝐵 ) ) |
| 13 |
|
pm2.21 |
⊢ ( ¬ 𝑥 < 𝐵 → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
| 14 |
12 13
|
syl6com |
⊢ ( 𝐵 ∈ ℝ* → ( 𝑥 = +∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = +∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 16 |
15
|
a1dd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = +∞ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 17 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 18 |
|
peano2rem |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) |
| 19 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( 𝑧 < 𝐵 ↔ ( 𝐵 − 1 ) < 𝐵 ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( 𝑧 < 𝑦 ↔ ( 𝐵 − 1 ) < 𝑦 ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 22 |
19 21
|
imbi12d |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 23 |
22
|
rspcv |
⊢ ( ( 𝐵 − 1 ) ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 24 |
18 23
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 26 |
|
ltm1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) < 𝐵 ) |
| 27 |
|
id |
⊢ ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 28 |
26 27
|
syl5com |
⊢ ( 𝐵 ∈ ℝ → ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 30 |
18
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 − 1 ) ∈ ℝ ) |
| 31 |
|
mnflt |
⊢ ( ( 𝐵 − 1 ) ∈ ℝ → -∞ < ( 𝐵 − 1 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → -∞ < ( 𝐵 − 1 ) ) |
| 33 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 34 |
30
|
rexrd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 − 1 ) ∈ ℝ* ) |
| 35 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 36 |
35
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 37 |
|
xrlttr |
⊢ ( ( -∞ ∈ ℝ* ∧ ( 𝐵 − 1 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( -∞ < ( 𝐵 − 1 ) ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < 𝑦 ) ) |
| 38 |
33 34 36 37
|
mp3an2i |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( -∞ < ( 𝐵 − 1 ) ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < 𝑦 ) ) |
| 39 |
32 38
|
mpand |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐵 − 1 ) < 𝑦 → -∞ < 𝑦 ) ) |
| 40 |
39
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 41 |
25 29 40
|
3syld |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 42 |
41
|
a1dd |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 43 |
|
1re |
⊢ 1 ∈ ℝ |
| 44 |
|
breq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 < 𝐵 ↔ 1 < 𝐵 ) ) |
| 45 |
|
breq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 < 𝑦 ↔ 1 < 𝑦 ) ) |
| 46 |
45
|
rexbidv |
⊢ ( 𝑧 = 1 → ( ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
| 47 |
44 46
|
imbi12d |
⊢ ( 𝑧 = 1 → ( ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) ) |
| 48 |
47
|
rspcv |
⊢ ( 1 ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) ) |
| 49 |
43 48
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
| 50 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 51 |
43 50
|
ax-mp |
⊢ 1 < +∞ |
| 52 |
|
breq2 |
⊢ ( 𝐵 = +∞ → ( 1 < 𝐵 ↔ 1 < +∞ ) ) |
| 53 |
51 52
|
mpbiri |
⊢ ( 𝐵 = +∞ → 1 < 𝐵 ) |
| 54 |
|
id |
⊢ ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
| 55 |
53 54
|
syl5com |
⊢ ( 𝐵 = +∞ → ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
| 56 |
|
mnflt |
⊢ ( 1 ∈ ℝ → -∞ < 1 ) |
| 57 |
43 56
|
ax-mp |
⊢ -∞ < 1 |
| 58 |
|
rexr |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) |
| 59 |
43 58
|
ax-mp |
⊢ 1 ∈ ℝ* |
| 60 |
|
xrlttr |
⊢ ( ( -∞ ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( -∞ < 1 ∧ 1 < 𝑦 ) → -∞ < 𝑦 ) ) |
| 61 |
33 59 60
|
mp3an12 |
⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ < 1 ∧ 1 < 𝑦 ) → -∞ < 𝑦 ) ) |
| 62 |
57 61
|
mpani |
⊢ ( 𝑦 ∈ ℝ* → ( 1 < 𝑦 → -∞ < 𝑦 ) ) |
| 63 |
35 62
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → ( 1 < 𝑦 → -∞ < 𝑦 ) ) |
| 64 |
63
|
reximdva |
⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑦 ∈ 𝐴 1 < 𝑦 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 65 |
55 64
|
sylan9r |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 66 |
49 65
|
syl5 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 67 |
66
|
a1dd |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 68 |
|
xrltnr |
⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) |
| 69 |
33 68
|
ax-mp |
⊢ ¬ -∞ < -∞ |
| 70 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( -∞ < 𝐵 ↔ -∞ < -∞ ) ) |
| 71 |
69 70
|
mtbiri |
⊢ ( 𝐵 = -∞ → ¬ -∞ < 𝐵 ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ¬ -∞ < 𝐵 ) |
| 73 |
72
|
pm2.21d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 74 |
73
|
a1d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 75 |
42 67 74
|
3jaodan |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 76 |
17 75
|
sylan2b |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 77 |
76
|
imp |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 78 |
|
breq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝐵 ↔ -∞ < 𝐵 ) ) |
| 79 |
|
breq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝑦 ↔ -∞ < 𝑦 ) ) |
| 80 |
79
|
rexbidv |
⊢ ( 𝑥 = -∞ → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 81 |
78 80
|
imbi12d |
⊢ ( 𝑥 = -∞ → ( ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 82 |
77 81
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = -∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 83 |
82
|
a1dd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = -∞ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 84 |
8 16 83
|
3jaod |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 85 |
6 84
|
biimtrid |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 ∈ ℝ* → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 86 |
85
|
com23 |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 87 |
86
|
ralimdv2 |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 88 |
87
|
ex |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 89 |
5 88
|
biimtrid |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 90 |
89
|
pm2.43d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 91 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 92 |
91
|
imim1i |
⊢ ( ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 93 |
92
|
ralimi2 |
⊢ ( ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
| 94 |
90 93
|
impbid1 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |