Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imacosupp | Unicode version |
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
imacosupp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5193 | . . . . . . . 8 | |
2 | 1 | imaeq1i 5339 | . . . . . . 7 |
3 | imaco 5517 | . . . . . . 7 | |
4 | 2, 3 | eqtri 2486 | . . . . . 6 |
5 | 4 | imaeq2i 5340 | . . . . 5 |
6 | funforn 5807 | . . . . . . . 8 | |
7 | 6 | biimpi 194 | . . . . . . 7 |
8 | 7 | ad2antrl 727 | . . . . . 6 |
9 | simpl 457 | . . . . . . . . . . . . 13 | |
10 | 9 | anim2i 569 | . . . . . . . . . . . 12 |
11 | 10 | ancomd 451 | . . . . . . . . . . 11 |
12 | suppimacnv 6929 | . . . . . . . . . . 11 | |
13 | 11, 12 | syl 16 | . . . . . . . . . 10 |
14 | 13 | sseq1d 3530 | . . . . . . . . 9 |
15 | 14 | biimpd 207 | . . . . . . . 8 |
16 | 15 | adantld 467 | . . . . . . 7 |
17 | 16 | imp 429 | . . . . . 6 |
18 | foimacnv 5838 | . . . . . 6 | |
19 | 8, 17, 18 | syl2anc 661 | . . . . 5 |
20 | 5, 19 | syl5eq 2510 | . . . 4 |
21 | coexg 6751 | . . . . . . . . 9 | |
22 | 21 | anim2i 569 | . . . . . . . 8 |
23 | 22 | ancomd 451 | . . . . . . 7 |
24 | suppimacnv 6929 | . . . . . . 7 | |
25 | 23, 24 | syl 16 | . . . . . 6 |
26 | 25 | imaeq2d 5342 | . . . . 5 |
27 | 26 | adantr 465 | . . . 4 |
28 | 13 | adantr 465 | . . . 4 |
29 | 20, 27, 28 | 3eqtr4d 2508 | . . 3 |
30 | 29 | exp31 604 | . 2 |
31 | ima0 5357 | . . . . 5 | |
32 | id 22 | . . . . . . . 8 | |
33 | 32 | intnand 916 | . . . . . . 7 |
34 | supp0prc 6921 | . . . . . . 7 | |
35 | 33, 34 | syl 16 | . . . . . 6 |
36 | 35 | imaeq2d 5342 | . . . . 5 |
37 | 32 | intnand 916 | . . . . . 6 |
38 | supp0prc 6921 | . . . . . 6 | |
39 | 37, 38 | syl 16 | . . . . 5 |
40 | 31, 36, 39 | 3eqtr4a 2524 | . . . 4 |
41 | 40 | a1d 25 | . . 3 |
42 | 41 | a1d 25 | . 2 |
43 | 30, 42 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 { csn 4029 `' ccnv 5003
dom cdm 5004 ran crn 5005 " cima 5007
o. ccom 5008 Fun wfun 5587 -onto-> wfo 5591 (class class class)co 6296
csupp 6918 |
This theorem is referenced by: gsumval3lem1 16909 gsumval3lem2 16910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fo 5599 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-supp 6919 |
Copyright terms: Public domain | W3C validator |