MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorebas Unicode version

Theorem ioorebas 11655
Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorebas

Proof of Theorem ioorebas
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3
2 iooid 11586 . . . 4
3 ioof 11651 . . . . . 6
4 ffn 5736 . . . . . 6
53, 4ax-mp 5 . . . . 5
6 0xr 9661 . . . . 5
7 fnovrn 6450 . . . . 5
85, 6, 6, 7mp3an 1324 . . . 4
92, 8eqeltrri 2542 . . 3
101, 9syl6eqel 2553 . 2
11 n0 3794 . . 3
12 eliooxr 11612 . . . . 5
13 fnovrn 6450 . . . . . 6
145, 13mp3an1 1311 . . . . 5
1512, 14syl 16 . . . 4
1615exlimiv 1722 . . 3
1711, 16sylbi 195 . 2
1810, 17pm2.61ine 2770 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  =/=wne 2652   c0 3784  ~Pcpw 4012  X.cxp 5002  rancrn 5005  Fnwfn 5588  -->wf 5589  (class class class)co 6296   cr 9512  0cc0 9513   cxr 9648   cioo 11558
This theorem is referenced by:  iooordt  19718  iooretop  21273  blssioo  21300  xrtgioo  21311  ioorinv2  21984  ioorinv  21985  uniioombllem2a  21991  ismbf  22037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590  ax-pre-sup 9591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-sup 7921  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-div 10232  df-nn 10562  df-n0 10821  df-z 10890  df-uz 11111  df-q 11212  df-ioo 11562
  Copyright terms: Public domain W3C validator