Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin1-2 | Unicode version |
Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin1-2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | elex 3118 | . . 3 | |
3 | pwexb 6611 | . . . 4 | |
4 | pwexb 6611 | . . . 4 | |
5 | 3, 4 | bitri 249 | . . 3 |
6 | 2, 5 | sylibr 212 | . 2 |
7 | ominf 7752 | . . . . . 6 | |
8 | pwfi 7835 | . . . . . . . 8 | |
9 | pwfi 7835 | . . . . . . . 8 | |
10 | 8, 9 | bitri 249 | . . . . . . 7 |
11 | domfi 7761 | . . . . . . . 8 | |
12 | 11 | expcom 435 | . . . . . . 7 |
13 | 10, 12 | syl5bi 217 | . . . . . 6 |
14 | 7, 13 | mtoi 178 | . . . . 5 |
15 | fineqvlem 7754 | . . . . . 6 | |
16 | 15 | ex 434 | . . . . 5 |
17 | 14, 16 | impbid2 204 | . . . 4 |
18 | 17 | con2bid 329 | . . 3 |
19 | isfin4-2 8715 | . . . 4 | |
20 | 5, 19 | sylbi 195 | . . 3 |
21 | 18, 20 | bitr4d 256 | . 2 |
22 | 1, 6, 21 | pm5.21nii 353 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
e. wcel 1818 cvv 3109
~P cpw 4012 class class class wbr 4452
com 6700
cdom 7534 cfn 7536 cfin4 8681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fin4 8688 |
Copyright terms: Public domain | W3C validator |