Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isprm2lem | Unicode version |
Description: Lemma for isprm2 14225. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
isprm2lem |
P
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 2738 | . . . 4 | |
2 | breq2 4456 | . . . . . . 7 | |
3 | 2 | rabbidv 3101 | . . . . . 6 |
4 | 3 | breq1d 4462 | . . . . 5 |
5 | preq2 4110 | . . . . . 6 | |
6 | 3, 5 | eqeq12d 2479 | . . . . 5 |
7 | 4, 6 | bibi12d 321 | . . . 4 |
8 | 1, 7 | imbi12d 320 | . . 3 |
9 | 1idssfct 14223 | . . . . . . . 8 | |
10 | disjsn 4090 | . . . . . . . . . . . 12 | |
11 | 1ex 9612 | . . . . . . . . . . . . . 14 | |
12 | 11 | ensn1 7599 | . . . . . . . . . . . . 13 |
13 | vex 3112 | . . . . . . . . . . . . . 14 | |
14 | 13 | ensn1 7599 | . . . . . . . . . . . . 13 |
15 | pm54.43 8402 | . . . . . . . . . . . . 13 | |
16 | 12, 14, 15 | mp2an 672 | . . . . . . . . . . . 12 |
17 | 10, 16 | bitr3i 251 | . . . . . . . . . . 11 |
18 | elsn 4043 | . . . . . . . . . . 11 | |
19 | 17, 18 | xchnxbi 308 | . . . . . . . . . 10 |
20 | df-ne 2654 | . . . . . . . . . 10 | |
21 | df-pr 4032 | . . . . . . . . . . 11 | |
22 | 21 | breq1i 4459 | . . . . . . . . . 10 |
23 | 19, 20, 22 | 3bitr4i 277 | . . . . . . . . 9 |
24 | ensym 7584 | . . . . . . . . . 10 | |
25 | entr 7587 | . . . . . . . . . 10 | |
26 | 24, 25 | sylan2 474 | . . . . . . . . 9 |
27 | 23, 26 | sylanb 472 | . . . . . . . 8 |
28 | prfi 7815 | . . . . . . . . . . 11 | |
29 | ensym 7584 | . . . . . . . . . . 11 | |
30 | enfii 7757 | . . . . . . . . . . 11 | |
31 | 28, 29, 30 | sylancr 663 | . . . . . . . . . 10 |
32 | 31 | adantl 466 | . . . . . . . . 9 |
33 | dfpss2 3588 | . . . . . . . . . . . 12 | |
34 | pssinf 7750 | . . . . . . . . . . . 12 | |
35 | 33, 34 | sylanbr 473 | . . . . . . . . . . 11 |
36 | 35 | an32s 804 | . . . . . . . . . 10 |
37 | 36 | ex 434 | . . . . . . . . 9 |
38 | 32, 37 | mt4d 138 | . . . . . . . 8 |
39 | 9, 27, 38 | syl2an 477 | . . . . . . 7 |
40 | 39 | eqcomd 2465 | . . . . . 6 |
41 | 40 | expr 615 | . . . . 5 |
42 | breq1 4455 | . . . . . . . 8 | |
43 | 42, 23 | syl6bbr 263 | . . . . . . 7 |
44 | 43 | biimprcd 225 | . . . . . 6 |
45 | 44 | adantl 466 | . . . . 5 |
46 | 41, 45 | impbid 191 | . . . 4 |
47 | 46 | ex 434 | . . 3 |
48 | 8, 47 | vtoclga 3173 | . 2 |
49 | 48 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 { crab 2811
u. cun 3473 i^i cin 3474 C_ wss 3475
C. wpss 3476 c0 3784 { csn 4029 { cpr 4031
class class class wbr 4452 c1o 7142
c2o 7143
cen 7533 cfn 7536 1 c1 9514 cn 10561 cdvds 13986 |
This theorem is referenced by: isprm2 14225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-z 10890 df-dvds 13987 |
Copyright terms: Public domain | W3C validator |