| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
|
eldifi |
|- ( C e. ( O \ E ) -> C e. O ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> C e. O ) |
| 11 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
| 12 |
11
|
simpld |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) |
| 13 |
|
elfznn |
|- ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) e. NN ) |
| 14 |
12 13
|
syl |
|- ( C e. ( O \ E ) -> ( I ` C ) e. NN ) |
| 15 |
14
|
adantr |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( I ` C ) e. NN ) |
| 16 |
1 2 3 4 5 6 7 8
|
ballotlemii |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( I ` C ) =/= 1 ) |
| 17 |
|
eluz2b3 |
|- ( ( I ` C ) e. ( ZZ>= ` 2 ) <-> ( ( I ` C ) e. NN /\ ( I ` C ) =/= 1 ) ) |
| 18 |
15 16 17
|
sylanbrc |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( I ` C ) e. ( ZZ>= ` 2 ) ) |
| 19 |
|
uz2m1nn |
|- ( ( I ` C ) e. ( ZZ>= ` 2 ) -> ( ( I ` C ) - 1 ) e. NN ) |
| 20 |
18 19
|
syl |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( I ` C ) - 1 ) e. NN ) |
| 21 |
20
|
adantr |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> ( ( I ` C ) - 1 ) e. NN ) |
| 22 |
|
elnnuz |
|- ( ( ( I ` C ) - 1 ) e. NN <-> ( ( I ` C ) - 1 ) e. ( ZZ>= ` 1 ) ) |
| 23 |
22
|
biimpi |
|- ( ( ( I ` C ) - 1 ) e. NN -> ( ( I ` C ) - 1 ) e. ( ZZ>= ` 1 ) ) |
| 24 |
|
eluzfz1 |
|- ( ( ( I ` C ) - 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) ) |
| 25 |
20 23 24
|
3syl |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) ) |
| 27 |
|
0le1 |
|- 0 <_ 1 |
| 28 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 29 |
27 28
|
breqtri |
|- 0 <_ ( 0 + 1 ) |
| 30 |
|
1nn |
|- 1 e. NN |
| 31 |
30
|
a1i |
|- ( C e. ( O \ E ) -> 1 e. NN ) |
| 32 |
1 2 3 4 5 9 31
|
ballotlemfp1 |
|- ( C e. ( O \ E ) -> ( ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) /\ ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) ) |
| 33 |
32
|
simprd |
|- ( C e. ( O \ E ) -> ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) |
| 34 |
33
|
imp |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) |
| 35 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 36 |
35
|
fveq2i |
|- ( ( F ` C ) ` ( 1 - 1 ) ) = ( ( F ` C ) ` 0 ) |
| 37 |
36
|
oveq1i |
|- ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) = ( ( ( F ` C ) ` 0 ) + 1 ) |
| 38 |
37
|
a1i |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) = ( ( ( F ` C ) ` 0 ) + 1 ) ) |
| 39 |
1 2 3 4 5
|
ballotlemfval0 |
|- ( C e. O -> ( ( F ` C ) ` 0 ) = 0 ) |
| 40 |
9 39
|
syl |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` 0 ) = 0 ) |
| 41 |
40
|
adantr |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( F ` C ) ` 0 ) = 0 ) |
| 42 |
41
|
oveq1d |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( ( F ` C ) ` 0 ) + 1 ) = ( 0 + 1 ) ) |
| 43 |
34 38 42
|
3eqtrrd |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( 0 + 1 ) = ( ( F ` C ) ` 1 ) ) |
| 44 |
29 43
|
breqtrid |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> 0 <_ ( ( F ` C ) ` 1 ) ) |
| 45 |
44
|
adantr |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> 0 <_ ( ( F ` C ) ` 1 ) ) |
| 46 |
|
fveq2 |
|- ( i = 1 -> ( ( F ` C ) ` i ) = ( ( F ` C ) ` 1 ) ) |
| 47 |
46
|
breq2d |
|- ( i = 1 -> ( 0 <_ ( ( F ` C ) ` i ) <-> 0 <_ ( ( F ` C ) ` 1 ) ) ) |
| 48 |
47
|
rspcev |
|- ( ( 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) /\ 0 <_ ( ( F ` C ) ` 1 ) ) -> E. i e. ( 1 ... ( ( I ` C ) - 1 ) ) 0 <_ ( ( F ` C ) ` i ) ) |
| 49 |
26 45 48
|
syl2anc |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> E. i e. ( 1 ... ( ( I ` C ) - 1 ) ) 0 <_ ( ( F ` C ) ` i ) ) |
| 50 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 51 |
1 2 3 4 5 9 14
|
ballotlemfp1 |
|- ( C e. ( O \ E ) -> ( ( -. ( I ` C ) e. C -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) - 1 ) ) /\ ( ( I ` C ) e. C -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) ) ) ) |
| 52 |
51
|
simprd |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. C -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) ) ) |
| 53 |
52
|
imp |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) ) |
| 54 |
11
|
simprd |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 ) |
| 55 |
54
|
adantr |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 ) |
| 56 |
53 55
|
eqtr3d |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) = 0 ) |
| 57 |
|
0cnd |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> 0 e. CC ) |
| 58 |
|
1cnd |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> 1 e. CC ) |
| 59 |
9
|
adantr |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> C e. O ) |
| 60 |
14
|
nnzd |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ZZ ) |
| 61 |
60
|
adantr |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( I ` C ) e. ZZ ) |
| 62 |
|
1zzd |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> 1 e. ZZ ) |
| 63 |
61 62
|
zsubcld |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( I ` C ) - 1 ) e. ZZ ) |
| 64 |
1 2 3 4 5 59 63
|
ballotlemfelz |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) e. ZZ ) |
| 65 |
64
|
zcnd |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) e. CC ) |
| 66 |
57 58 65
|
subadd2d |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( 0 - 1 ) = ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) <-> ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) = 0 ) ) |
| 67 |
56 66
|
mpbird |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( 0 - 1 ) = ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) ) |
| 68 |
50 67
|
eqtrid |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> -u 1 = ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) ) |
| 69 |
|
neg1lt0 |
|- -u 1 < 0 |
| 70 |
68 69
|
eqbrtrrdi |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) < 0 ) |
| 71 |
70
|
adantlr |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) < 0 ) |
| 72 |
1 2 3 4 5 10 21 49 71
|
ballotlemfcc |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> E. k e. ( 1 ... ( ( I ` C ) - 1 ) ) ( ( F ` C ) ` k ) = 0 ) |
| 73 |
1 2 3 4 5 6 7 8
|
ballotlemimin |
|- ( C e. ( O \ E ) -> -. E. k e. ( 1 ... ( ( I ` C ) - 1 ) ) ( ( F ` C ) ` k ) = 0 ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> -. E. k e. ( 1 ... ( ( I ` C ) - 1 ) ) ( ( F ` C ) ` k ) = 0 ) |
| 75 |
72 74
|
pm2.65da |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> -. ( I ` C ) e. C ) |