| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1136.1 |
|- B = ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 2 |
|
bnj1136.2 |
|- ( th <-> ( R _FrSe A /\ X e. A ) ) |
| 3 |
|
bnj1136.3 |
|- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
| 4 |
2
|
biimpri |
|- ( ( R _FrSe A /\ X e. A ) -> th ) |
| 5 |
|
bnj1148 |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) e. _V ) |
| 6 |
|
bnj893 |
|- ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) e. _V ) |
| 7 |
|
simp1 |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) ) -> R _FrSe A ) |
| 8 |
|
bnj1127 |
|- ( y e. _trCl ( X , A , R ) -> y e. A ) |
| 9 |
8
|
3ad2ant3 |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) ) -> y e. A ) |
| 10 |
|
bnj893 |
|- ( ( R _FrSe A /\ y e. A ) -> _trCl ( y , A , R ) e. _V ) |
| 11 |
7 9 10
|
syl2anc |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) ) -> _trCl ( y , A , R ) e. _V ) |
| 12 |
11
|
3expia |
|- ( ( R _FrSe A /\ X e. A ) -> ( y e. _trCl ( X , A , R ) -> _trCl ( y , A , R ) e. _V ) ) |
| 13 |
12
|
ralrimiv |
|- ( ( R _FrSe A /\ X e. A ) -> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) e. _V ) |
| 14 |
|
iunexg |
|- ( ( _trCl ( X , A , R ) e. _V /\ A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) e. _V ) -> U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) e. _V ) |
| 15 |
6 13 14
|
syl2anc |
|- ( ( R _FrSe A /\ X e. A ) -> U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) e. _V ) |
| 16 |
5 15
|
bnj1149 |
|- ( ( R _FrSe A /\ X e. A ) -> ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) e. _V ) |
| 17 |
1 16
|
eqeltrid |
|- ( ( R _FrSe A /\ X e. A ) -> B e. _V ) |
| 18 |
1
|
bnj1137 |
|- ( ( R _FrSe A /\ X e. A ) -> _TrFo ( B , A , R ) ) |
| 19 |
1
|
bnj931 |
|- _pred ( X , A , R ) C_ B |
| 20 |
19
|
a1i |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) C_ B ) |
| 21 |
17 18 20 3
|
syl3anbrc |
|- ( ( R _FrSe A /\ X e. A ) -> ta ) |
| 22 |
2 3
|
bnj1124 |
|- ( ( th /\ ta ) -> _trCl ( X , A , R ) C_ B ) |
| 23 |
4 21 22
|
syl2anc |
|- ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) C_ B ) |
| 24 |
|
bnj906 |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |
| 25 |
|
bnj1125 |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) ) -> _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 26 |
25
|
3expia |
|- ( ( R _FrSe A /\ X e. A ) -> ( y e. _trCl ( X , A , R ) -> _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 27 |
26
|
ralrimiv |
|- ( ( R _FrSe A /\ X e. A ) -> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 28 |
|
ss2iun |
|- ( A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) -> U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( X , A , R ) ) |
| 29 |
|
bnj1143 |
|- U_ y e. _trCl ( X , A , R ) _trCl ( X , A , R ) C_ _trCl ( X , A , R ) |
| 30 |
28 29
|
sstrdi |
|- ( A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) -> U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 31 |
27 30
|
syl |
|- ( ( R _FrSe A /\ X e. A ) -> U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 32 |
24 31
|
unssd |
|- ( ( R _FrSe A /\ X e. A ) -> ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) C_ _trCl ( X , A , R ) ) |
| 33 |
1 32
|
eqsstrid |
|- ( ( R _FrSe A /\ X e. A ) -> B C_ _trCl ( X , A , R ) ) |
| 34 |
23 33
|
eqssd |
|- ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) = B ) |