Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme11.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme11.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme11.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme11.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme11.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme11.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme11.c |
|- C = ( ( P .\/ S ) ./\ W ) |
8 |
|
cdleme11.d |
|- D = ( ( P .\/ T ) ./\ W ) |
9 |
|
cdleme11.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
10 |
9
|
oveq2i |
|- ( Q .\/ F ) = ( Q .\/ ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
11 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> K e. HL ) |
12 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> Q e. A ) |
13 |
11
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> K e. Lat ) |
14 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> S e. A ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
17 |
14 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> S e. ( Base ` K ) ) |
18 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> P e. A ) |
20 |
1 2 3 4 5 6 15
|
cdleme0aa |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) ) |
21 |
18 19 12 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> U e. ( Base ` K ) ) |
22 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( S .\/ U ) e. ( Base ` K ) ) |
23 |
13 17 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( S .\/ U ) e. ( Base ` K ) ) |
24 |
15 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
25 |
12 24
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> Q e. ( Base ` K ) ) |
26 |
15 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
27 |
19 26
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> P e. ( Base ` K ) ) |
28 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
29 |
13 27 17 28
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( P .\/ S ) e. ( Base ` K ) ) |
30 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> W e. H ) |
31 |
15 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
32 |
30 31
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> W e. ( Base ` K ) ) |
33 |
15 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ W ) e. ( Base ` K ) ) |
34 |
13 29 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( ( P .\/ S ) ./\ W ) e. ( Base ` K ) ) |
35 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ W ) ) e. ( Base ` K ) ) |
36 |
13 25 34 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ ( ( P .\/ S ) ./\ W ) ) e. ( Base ` K ) ) |
37 |
15 1 2
|
latlej1 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ W ) e. ( Base ` K ) ) -> Q .<_ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
38 |
13 25 34 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> Q .<_ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
39 |
15 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( S .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) e. ( Base ` K ) ) /\ Q .<_ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) -> ( Q .\/ ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) = ( ( Q .\/ ( S .\/ U ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
40 |
11 12 23 36 38 39
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) = ( ( Q .\/ ( S .\/ U ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
41 |
10 40
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ F ) = ( ( Q .\/ ( S .\/ U ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
42 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q e. A /\ -. Q .<_ W ) ) |
43 |
1 2 3 4 5 6
|
cdleme0cq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( Q .\/ U ) = ( P .\/ Q ) ) |
44 |
18 19 42 43
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ U ) = ( P .\/ Q ) ) |
45 |
44
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( S .\/ ( Q .\/ U ) ) = ( S .\/ ( P .\/ Q ) ) ) |
46 |
15 2
|
latj12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ S e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( Q .\/ ( S .\/ U ) ) = ( S .\/ ( Q .\/ U ) ) ) |
47 |
13 25 17 21 46
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ ( S .\/ U ) ) = ( S .\/ ( Q .\/ U ) ) ) |
48 |
15 2
|
latj13 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( Q .\/ ( P .\/ S ) ) = ( S .\/ ( P .\/ Q ) ) ) |
49 |
13 25 27 17 48
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ ( P .\/ S ) ) = ( S .\/ ( P .\/ Q ) ) ) |
50 |
45 47 49
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ ( S .\/ U ) ) = ( Q .\/ ( P .\/ S ) ) ) |
51 |
50
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( ( Q .\/ ( S .\/ U ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
52 |
15 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ W ) .<_ ( P .\/ S ) ) |
53 |
13 29 32 52
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( ( P .\/ S ) ./\ W ) .<_ ( P .\/ S ) ) |
54 |
15 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( P .\/ S ) ./\ W ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( ( ( P .\/ S ) ./\ W ) .<_ ( P .\/ S ) -> ( Q .\/ ( ( P .\/ S ) ./\ W ) ) .<_ ( Q .\/ ( P .\/ S ) ) ) ) |
55 |
13 34 29 25 54
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( ( ( P .\/ S ) ./\ W ) .<_ ( P .\/ S ) -> ( Q .\/ ( ( P .\/ S ) ./\ W ) ) .<_ ( Q .\/ ( P .\/ S ) ) ) ) |
56 |
53 55
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ ( ( P .\/ S ) ./\ W ) ) .<_ ( Q .\/ ( P .\/ S ) ) ) |
57 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
58 |
13 25 29 57
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
59 |
15 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) e. ( Base ` K ) /\ ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) ) -> ( ( Q .\/ ( ( P .\/ S ) ./\ W ) ) .<_ ( Q .\/ ( P .\/ S ) ) <-> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
60 |
13 36 58 59
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( ( Q .\/ ( ( P .\/ S ) ./\ W ) ) .<_ ( Q .\/ ( P .\/ S ) ) <-> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
61 |
56 60
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
62 |
7
|
oveq2i |
|- ( Q .\/ C ) = ( Q .\/ ( ( P .\/ S ) ./\ W ) ) |
63 |
61 62
|
eqtr4di |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( Q .\/ C ) ) |
64 |
41 51 63
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ P =/= Q ) -> ( Q .\/ F ) = ( Q .\/ C ) ) |