| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circlevma.n |
|- ( ph -> N e. NN0 ) |
| 2 |
|
3nn |
|- 3 e. NN |
| 3 |
2
|
a1i |
|- ( ph -> 3 e. NN ) |
| 4 |
|
vmaf |
|- Lam : NN --> RR |
| 5 |
|
ax-resscn |
|- RR C_ CC |
| 6 |
|
fss |
|- ( ( Lam : NN --> RR /\ RR C_ CC ) -> Lam : NN --> CC ) |
| 7 |
4 5 6
|
mp2an |
|- Lam : NN --> CC |
| 8 |
|
cnex |
|- CC e. _V |
| 9 |
|
nnex |
|- NN e. _V |
| 10 |
|
elmapg |
|- ( ( CC e. _V /\ NN e. _V ) -> ( Lam e. ( CC ^m NN ) <-> Lam : NN --> CC ) ) |
| 11 |
8 9 10
|
mp2an |
|- ( Lam e. ( CC ^m NN ) <-> Lam : NN --> CC ) |
| 12 |
7 11
|
mpbir |
|- Lam e. ( CC ^m NN ) |
| 13 |
12
|
fconst6 |
|- ( ( 0 ..^ 3 ) X. { Lam } ) : ( 0 ..^ 3 ) --> ( CC ^m NN ) |
| 14 |
13
|
a1i |
|- ( ph -> ( ( 0 ..^ 3 ) X. { Lam } ) : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
| 15 |
1 3 14
|
circlemeth |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
| 16 |
|
c0ex |
|- 0 e. _V |
| 17 |
16
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
| 18 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 19 |
17 18
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
| 20 |
|
eleq1 |
|- ( a = 0 -> ( a e. ( 0 ..^ 3 ) <-> 0 e. ( 0 ..^ 3 ) ) ) |
| 21 |
19 20
|
mpbiri |
|- ( a = 0 -> a e. ( 0 ..^ 3 ) ) |
| 22 |
12
|
elexi |
|- Lam e. _V |
| 23 |
22
|
fvconst2 |
|- ( a e. ( 0 ..^ 3 ) -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
| 24 |
21 23
|
syl |
|- ( a = 0 -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
| 25 |
|
fveq2 |
|- ( a = 0 -> ( n ` a ) = ( n ` 0 ) ) |
| 26 |
24 25
|
fveq12d |
|- ( a = 0 -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` 0 ) ) ) |
| 27 |
|
1ex |
|- 1 e. _V |
| 28 |
27
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
| 29 |
28 18
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
| 30 |
|
eleq1 |
|- ( a = 1 -> ( a e. ( 0 ..^ 3 ) <-> 1 e. ( 0 ..^ 3 ) ) ) |
| 31 |
29 30
|
mpbiri |
|- ( a = 1 -> a e. ( 0 ..^ 3 ) ) |
| 32 |
31 23
|
syl |
|- ( a = 1 -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
| 33 |
|
fveq2 |
|- ( a = 1 -> ( n ` a ) = ( n ` 1 ) ) |
| 34 |
32 33
|
fveq12d |
|- ( a = 1 -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` 1 ) ) ) |
| 35 |
|
2ex |
|- 2 e. _V |
| 36 |
35
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
| 37 |
36 18
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
| 38 |
|
eleq1 |
|- ( a = 2 -> ( a e. ( 0 ..^ 3 ) <-> 2 e. ( 0 ..^ 3 ) ) ) |
| 39 |
37 38
|
mpbiri |
|- ( a = 2 -> a e. ( 0 ..^ 3 ) ) |
| 40 |
39 23
|
syl |
|- ( a = 2 -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
| 41 |
|
fveq2 |
|- ( a = 2 -> ( n ` a ) = ( n ` 2 ) ) |
| 42 |
40 41
|
fveq12d |
|- ( a = 2 -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` 2 ) ) ) |
| 43 |
23
|
fveq1d |
|- ( a e. ( 0 ..^ 3 ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` a ) ) ) |
| 44 |
43
|
adantl |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` a ) ) ) |
| 45 |
7
|
a1i |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> Lam : NN --> CC ) |
| 46 |
|
ssidd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> NN C_ NN ) |
| 47 |
1
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> N e. ZZ ) |
| 49 |
2
|
nnnn0i |
|- 3 e. NN0 |
| 50 |
49
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 3 e. NN0 ) |
| 51 |
|
simpr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 52 |
46 48 50 51
|
reprf |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
| 53 |
52
|
ffvelcdmda |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( n ` a ) e. NN ) |
| 54 |
45 53
|
ffvelcdmd |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( Lam ` ( n ` a ) ) e. CC ) |
| 55 |
44 54
|
eqeltrd |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) e. CC ) |
| 56 |
26 34 42 55
|
prodfzo03 |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) |
| 57 |
56
|
sumeq2dv |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = sum_ n e. ( NN ( repr ` 3 ) N ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) |
| 58 |
23
|
adantl |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
| 59 |
58
|
oveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) = ( Lam vts N ) ) |
| 60 |
59
|
fveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) = ( ( Lam vts N ) ` x ) ) |
| 61 |
60
|
prodeq2dv |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) = prod_ a e. ( 0 ..^ 3 ) ( ( Lam vts N ) ` x ) ) |
| 62 |
|
fzofi |
|- ( 0 ..^ 3 ) e. Fin |
| 63 |
62
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 0 ..^ 3 ) e. Fin ) |
| 64 |
1
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> N e. NN0 ) |
| 65 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
| 66 |
65 5
|
sstri |
|- ( 0 (,) 1 ) C_ CC |
| 67 |
66
|
a1i |
|- ( ph -> ( 0 (,) 1 ) C_ CC ) |
| 68 |
67
|
sselda |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> x e. CC ) |
| 69 |
7
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> Lam : NN --> CC ) |
| 70 |
64 68 69
|
vtscl |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( Lam vts N ) ` x ) e. CC ) |
| 71 |
|
fprodconst |
|- ( ( ( 0 ..^ 3 ) e. Fin /\ ( ( Lam vts N ) ` x ) e. CC ) -> prod_ a e. ( 0 ..^ 3 ) ( ( Lam vts N ) ` x ) = ( ( ( Lam vts N ) ` x ) ^ ( # ` ( 0 ..^ 3 ) ) ) ) |
| 72 |
63 70 71
|
syl2anc |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( Lam vts N ) ` x ) = ( ( ( Lam vts N ) ` x ) ^ ( # ` ( 0 ..^ 3 ) ) ) ) |
| 73 |
|
hashfzo0 |
|- ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
| 74 |
49 73
|
ax-mp |
|- ( # ` ( 0 ..^ 3 ) ) = 3 |
| 75 |
74
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
| 76 |
75
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam vts N ) ` x ) ^ ( # ` ( 0 ..^ 3 ) ) ) = ( ( ( Lam vts N ) ` x ) ^ 3 ) ) |
| 77 |
61 72 76
|
3eqtrd |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) = ( ( ( Lam vts N ) ` x ) ^ 3 ) ) |
| 78 |
77
|
oveq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) = ( ( ( ( Lam vts N ) ` x ) ^ 3 ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) ) |
| 79 |
78
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x = S. ( 0 (,) 1 ) ( ( ( ( Lam vts N ) ` x ) ^ 3 ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
| 80 |
15 57 79
|
3eqtr3d |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) = S. ( 0 (,) 1 ) ( ( ( ( Lam vts N ) ` x ) ^ 3 ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |