| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpaddlelem.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
cxpaddlelem.2 |
|- ( ph -> 0 <_ A ) |
| 3 |
|
cxpaddlelem.3 |
|- ( ph -> A <_ 1 ) |
| 4 |
|
cxpaddlelem.4 |
|- ( ph -> B e. RR+ ) |
| 5 |
|
cxpaddlelem.5 |
|- ( ph -> B <_ 1 ) |
| 6 |
|
1re |
|- 1 e. RR |
| 7 |
4
|
rpred |
|- ( ph -> B e. RR ) |
| 8 |
|
resubcl |
|- ( ( 1 e. RR /\ B e. RR ) -> ( 1 - B ) e. RR ) |
| 9 |
6 7 8
|
sylancr |
|- ( ph -> ( 1 - B ) e. RR ) |
| 10 |
1 2 9
|
recxpcld |
|- ( ph -> ( A ^c ( 1 - B ) ) e. RR ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( A ^c ( 1 - B ) ) e. RR ) |
| 12 |
|
1red |
|- ( ( ph /\ 0 < A ) -> 1 e. RR ) |
| 13 |
|
recxpcl |
|- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) e. RR ) |
| 14 |
|
cxpge0 |
|- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> 0 <_ ( A ^c B ) ) |
| 15 |
13 14
|
jca |
|- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( ( A ^c B ) e. RR /\ 0 <_ ( A ^c B ) ) ) |
| 16 |
1 2 7 15
|
syl3anc |
|- ( ph -> ( ( A ^c B ) e. RR /\ 0 <_ ( A ^c B ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( ( A ^c B ) e. RR /\ 0 <_ ( A ^c B ) ) ) |
| 18 |
3
|
ad2antrr |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> A <_ 1 ) |
| 19 |
1
|
ad2antrr |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> A e. RR ) |
| 20 |
2
|
ad2antrr |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> 0 <_ A ) |
| 21 |
|
1red |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> 1 e. RR ) |
| 22 |
|
0le1 |
|- 0 <_ 1 |
| 23 |
22
|
a1i |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> 0 <_ 1 ) |
| 24 |
|
difrp |
|- ( ( B e. RR /\ 1 e. RR ) -> ( B < 1 <-> ( 1 - B ) e. RR+ ) ) |
| 25 |
7 6 24
|
sylancl |
|- ( ph -> ( B < 1 <-> ( 1 - B ) e. RR+ ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( B < 1 <-> ( 1 - B ) e. RR+ ) ) |
| 27 |
26
|
biimpa |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> ( 1 - B ) e. RR+ ) |
| 28 |
19 20 21 23 27
|
cxple2d |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> ( A <_ 1 <-> ( A ^c ( 1 - B ) ) <_ ( 1 ^c ( 1 - B ) ) ) ) |
| 29 |
18 28
|
mpbid |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> ( A ^c ( 1 - B ) ) <_ ( 1 ^c ( 1 - B ) ) ) |
| 30 |
9
|
recnd |
|- ( ph -> ( 1 - B ) e. CC ) |
| 31 |
30
|
1cxpd |
|- ( ph -> ( 1 ^c ( 1 - B ) ) = 1 ) |
| 32 |
31
|
ad2antrr |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> ( 1 ^c ( 1 - B ) ) = 1 ) |
| 33 |
29 32
|
breqtrd |
|- ( ( ( ph /\ 0 < A ) /\ B < 1 ) -> ( A ^c ( 1 - B ) ) <_ 1 ) |
| 34 |
|
simpr |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> B = 1 ) |
| 35 |
34
|
oveq2d |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> ( 1 - B ) = ( 1 - 1 ) ) |
| 36 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 37 |
35 36
|
eqtrdi |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> ( 1 - B ) = 0 ) |
| 38 |
37
|
oveq2d |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> ( A ^c ( 1 - B ) ) = ( A ^c 0 ) ) |
| 39 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 40 |
39
|
ad2antrr |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> A e. CC ) |
| 41 |
40
|
cxp0d |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> ( A ^c 0 ) = 1 ) |
| 42 |
38 41
|
eqtrd |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> ( A ^c ( 1 - B ) ) = 1 ) |
| 43 |
|
1le1 |
|- 1 <_ 1 |
| 44 |
42 43
|
eqbrtrdi |
|- ( ( ( ph /\ 0 < A ) /\ B = 1 ) -> ( A ^c ( 1 - B ) ) <_ 1 ) |
| 45 |
|
leloe |
|- ( ( B e. RR /\ 1 e. RR ) -> ( B <_ 1 <-> ( B < 1 \/ B = 1 ) ) ) |
| 46 |
7 6 45
|
sylancl |
|- ( ph -> ( B <_ 1 <-> ( B < 1 \/ B = 1 ) ) ) |
| 47 |
5 46
|
mpbid |
|- ( ph -> ( B < 1 \/ B = 1 ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( B < 1 \/ B = 1 ) ) |
| 49 |
33 44 48
|
mpjaodan |
|- ( ( ph /\ 0 < A ) -> ( A ^c ( 1 - B ) ) <_ 1 ) |
| 50 |
|
lemul1a |
|- ( ( ( ( A ^c ( 1 - B ) ) e. RR /\ 1 e. RR /\ ( ( A ^c B ) e. RR /\ 0 <_ ( A ^c B ) ) ) /\ ( A ^c ( 1 - B ) ) <_ 1 ) -> ( ( A ^c ( 1 - B ) ) x. ( A ^c B ) ) <_ ( 1 x. ( A ^c B ) ) ) |
| 51 |
11 12 17 49 50
|
syl31anc |
|- ( ( ph /\ 0 < A ) -> ( ( A ^c ( 1 - B ) ) x. ( A ^c B ) ) <_ ( 1 x. ( A ^c B ) ) ) |
| 52 |
|
ax-1cn |
|- 1 e. CC |
| 53 |
7
|
recnd |
|- ( ph -> B e. CC ) |
| 54 |
|
npcan |
|- ( ( 1 e. CC /\ B e. CC ) -> ( ( 1 - B ) + B ) = 1 ) |
| 55 |
52 53 54
|
sylancr |
|- ( ph -> ( ( 1 - B ) + B ) = 1 ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( ( 1 - B ) + B ) = 1 ) |
| 57 |
56
|
oveq2d |
|- ( ( ph /\ 0 < A ) -> ( A ^c ( ( 1 - B ) + B ) ) = ( A ^c 1 ) ) |
| 58 |
39
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. CC ) |
| 59 |
1
|
anim1i |
|- ( ( ph /\ 0 < A ) -> ( A e. RR /\ 0 < A ) ) |
| 60 |
|
elrp |
|- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
| 61 |
59 60
|
sylibr |
|- ( ( ph /\ 0 < A ) -> A e. RR+ ) |
| 62 |
61
|
rpne0d |
|- ( ( ph /\ 0 < A ) -> A =/= 0 ) |
| 63 |
30
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( 1 - B ) e. CC ) |
| 64 |
53
|
adantr |
|- ( ( ph /\ 0 < A ) -> B e. CC ) |
| 65 |
58 62 63 64
|
cxpaddd |
|- ( ( ph /\ 0 < A ) -> ( A ^c ( ( 1 - B ) + B ) ) = ( ( A ^c ( 1 - B ) ) x. ( A ^c B ) ) ) |
| 66 |
39
|
cxp1d |
|- ( ph -> ( A ^c 1 ) = A ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( A ^c 1 ) = A ) |
| 68 |
57 65 67
|
3eqtr3d |
|- ( ( ph /\ 0 < A ) -> ( ( A ^c ( 1 - B ) ) x. ( A ^c B ) ) = A ) |
| 69 |
39 53
|
cxpcld |
|- ( ph -> ( A ^c B ) e. CC ) |
| 70 |
69
|
mullidd |
|- ( ph -> ( 1 x. ( A ^c B ) ) = ( A ^c B ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( 1 x. ( A ^c B ) ) = ( A ^c B ) ) |
| 72 |
51 68 71
|
3brtr3d |
|- ( ( ph /\ 0 < A ) -> A <_ ( A ^c B ) ) |
| 73 |
1 2 7
|
cxpge0d |
|- ( ph -> 0 <_ ( A ^c B ) ) |
| 74 |
|
breq1 |
|- ( 0 = A -> ( 0 <_ ( A ^c B ) <-> A <_ ( A ^c B ) ) ) |
| 75 |
73 74
|
syl5ibcom |
|- ( ph -> ( 0 = A -> A <_ ( A ^c B ) ) ) |
| 76 |
75
|
imp |
|- ( ( ph /\ 0 = A ) -> A <_ ( A ^c B ) ) |
| 77 |
|
0re |
|- 0 e. RR |
| 78 |
|
leloe |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 79 |
77 1 78
|
sylancr |
|- ( ph -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 80 |
2 79
|
mpbid |
|- ( ph -> ( 0 < A \/ 0 = A ) ) |
| 81 |
72 76 80
|
mpjaodan |
|- ( ph -> A <_ ( A ^c B ) ) |