| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpaddlelem.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
cxpaddlelem.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 3 |
|
cxpaddlelem.3 |
⊢ ( 𝜑 → 𝐴 ≤ 1 ) |
| 4 |
|
cxpaddlelem.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 5 |
|
cxpaddlelem.5 |
⊢ ( 𝜑 → 𝐵 ≤ 1 ) |
| 6 |
|
1re |
⊢ 1 ∈ ℝ |
| 7 |
4
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 8 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1 − 𝐵 ) ∈ ℝ ) |
| 9 |
6 7 8
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝐵 ) ∈ ℝ ) |
| 10 |
1 2 9
|
recxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ∈ ℝ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ∈ ℝ ) |
| 12 |
|
1red |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 1 ∈ ℝ ) |
| 13 |
|
recxpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) |
| 14 |
|
cxpge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
| 15 |
13 14
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 16 |
1 2 7 15
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 18 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → 𝐴 ≤ 1 ) |
| 19 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → 𝐴 ∈ ℝ ) |
| 20 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → 0 ≤ 𝐴 ) |
| 21 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → 1 ∈ ℝ ) |
| 22 |
|
0le1 |
⊢ 0 ≤ 1 |
| 23 |
22
|
a1i |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → 0 ≤ 1 ) |
| 24 |
|
difrp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐵 < 1 ↔ ( 1 − 𝐵 ) ∈ ℝ+ ) ) |
| 25 |
7 6 24
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 < 1 ↔ ( 1 − 𝐵 ) ∈ ℝ+ ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 < 1 ↔ ( 1 − 𝐵 ) ∈ ℝ+ ) ) |
| 27 |
26
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → ( 1 − 𝐵 ) ∈ ℝ+ ) |
| 28 |
19 20 21 23 27
|
cxple2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → ( 𝐴 ≤ 1 ↔ ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ≤ ( 1 ↑𝑐 ( 1 − 𝐵 ) ) ) ) |
| 29 |
18 28
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ≤ ( 1 ↑𝑐 ( 1 − 𝐵 ) ) ) |
| 30 |
9
|
recnd |
⊢ ( 𝜑 → ( 1 − 𝐵 ) ∈ ℂ ) |
| 31 |
30
|
1cxpd |
⊢ ( 𝜑 → ( 1 ↑𝑐 ( 1 − 𝐵 ) ) = 1 ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → ( 1 ↑𝑐 ( 1 − 𝐵 ) ) = 1 ) |
| 33 |
29 32
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 < 1 ) → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ≤ 1 ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → 𝐵 = 1 ) |
| 35 |
34
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → ( 1 − 𝐵 ) = ( 1 − 1 ) ) |
| 36 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 37 |
35 36
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → ( 1 − 𝐵 ) = 0 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) = ( 𝐴 ↑𝑐 0 ) ) |
| 39 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → 𝐴 ∈ ℂ ) |
| 41 |
40
|
cxp0d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → ( 𝐴 ↑𝑐 0 ) = 1 ) |
| 42 |
38 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) = 1 ) |
| 43 |
|
1le1 |
⊢ 1 ≤ 1 |
| 44 |
42 43
|
eqbrtrdi |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝐵 = 1 ) → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ≤ 1 ) |
| 45 |
|
leloe |
⊢ ( ( 𝐵 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐵 ≤ 1 ↔ ( 𝐵 < 1 ∨ 𝐵 = 1 ) ) ) |
| 46 |
7 6 45
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ≤ 1 ↔ ( 𝐵 < 1 ∨ 𝐵 = 1 ) ) ) |
| 47 |
5 46
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 < 1 ∨ 𝐵 = 1 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 < 1 ∨ 𝐵 = 1 ) ) |
| 49 |
33 44 48
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ≤ 1 ) |
| 50 |
|
lemul1a |
⊢ ( ( ( ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) ∧ ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) ≤ 1 ) → ( ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ≤ ( 1 · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 51 |
11 12 17 49 50
|
syl31anc |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ≤ ( 1 · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 52 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 53 |
7
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 54 |
|
npcan |
⊢ ( ( 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 − 𝐵 ) + 𝐵 ) = 1 ) |
| 55 |
52 53 54
|
sylancr |
⊢ ( 𝜑 → ( ( 1 − 𝐵 ) + 𝐵 ) = 1 ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 1 − 𝐵 ) + 𝐵 ) = 1 ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ↑𝑐 ( ( 1 − 𝐵 ) + 𝐵 ) ) = ( 𝐴 ↑𝑐 1 ) ) |
| 58 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 59 |
1
|
anim1i |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 60 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 61 |
59 60
|
sylibr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 62 |
61
|
rpne0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 63 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 1 − 𝐵 ) ∈ ℂ ) |
| 64 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 ∈ ℂ ) |
| 65 |
58 62 63 64
|
cxpaddd |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ↑𝑐 ( ( 1 − 𝐵 ) + 𝐵 ) ) = ( ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 66 |
39
|
cxp1d |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
| 68 |
57 65 67
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 ↑𝑐 ( 1 − 𝐵 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = 𝐴 ) |
| 69 |
39 53
|
cxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
| 70 |
69
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐴 ↑𝑐 𝐵 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 1 · ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐴 ↑𝑐 𝐵 ) ) |
| 72 |
51 68 71
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
| 73 |
1 2 7
|
cxpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
| 74 |
|
breq1 |
⊢ ( 0 = 𝐴 → ( 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ↔ 𝐴 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 75 |
73 74
|
syl5ibcom |
⊢ ( 𝜑 → ( 0 = 𝐴 → 𝐴 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 76 |
75
|
imp |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐴 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
| 77 |
|
0re |
⊢ 0 ∈ ℝ |
| 78 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 79 |
77 1 78
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 80 |
2 79
|
mpbid |
⊢ ( 𝜑 → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 81 |
72 76 80
|
mpjaodan |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |