| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvgt0.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dvgt0.b |
|- ( ph -> B e. RR ) |
| 3 |
|
dvgt0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 4 |
|
dvgt0lem.d |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
| 5 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
| 6 |
|
simplrl |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. ( A [,] B ) ) |
| 7 |
5 6
|
sselid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. RR* ) |
| 8 |
|
simplrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. ( A [,] B ) ) |
| 9 |
5 8
|
sselid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. RR* ) |
| 10 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 11 |
1 2 10
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( A [,] B ) C_ RR ) |
| 13 |
12 6
|
sseldd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. RR ) |
| 14 |
12 8
|
sseldd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. RR ) |
| 15 |
|
simpr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X < Y ) |
| 16 |
13 14 15
|
ltled |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X <_ Y ) |
| 17 |
|
ubicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
| 18 |
7 9 16 17
|
syl3anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. ( X [,] Y ) ) |
| 19 |
18
|
fvresd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( F |` ( X [,] Y ) ) ` Y ) = ( F ` Y ) ) |
| 20 |
|
lbicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> X e. ( X [,] Y ) ) |
| 21 |
7 9 16 20
|
syl3anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. ( X [,] Y ) ) |
| 22 |
21
|
fvresd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( F |` ( X [,] Y ) ) ` X ) = ( F ` X ) ) |
| 23 |
19 22
|
oveq12d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) = ( ( F ` Y ) - ( F ` X ) ) ) |
| 24 |
23
|
oveq1d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) = ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) |
| 25 |
|
iccss2 |
|- ( ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) -> ( X [,] Y ) C_ ( A [,] B ) ) |
| 26 |
25
|
ad2antlr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X [,] Y ) C_ ( A [,] B ) ) |
| 27 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 28 |
|
rescncf |
|- ( ( X [,] Y ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( X [,] Y ) ) e. ( ( X [,] Y ) -cn-> RR ) ) ) |
| 29 |
26 27 28
|
sylc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( F |` ( X [,] Y ) ) e. ( ( X [,] Y ) -cn-> RR ) ) |
| 30 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D F ) : ( A (,) B ) --> S ) |
| 31 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A e. RR ) |
| 32 |
31
|
rexrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A e. RR* ) |
| 33 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> B e. RR ) |
| 34 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 35 |
31 33 34
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 36 |
6 35
|
mpbid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X e. RR /\ A <_ X /\ X <_ B ) ) |
| 37 |
36
|
simp2d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A <_ X ) |
| 38 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ X ) -> ( X (,) Y ) C_ ( A (,) Y ) ) |
| 39 |
32 37 38
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X (,) Y ) C_ ( A (,) Y ) ) |
| 40 |
33
|
rexrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> B e. RR* ) |
| 41 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( Y e. ( A [,] B ) <-> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) ) |
| 42 |
31 33 41
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( Y e. ( A [,] B ) <-> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) ) |
| 43 |
8 42
|
mpbid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) |
| 44 |
43
|
simp3d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y <_ B ) |
| 45 |
|
iooss2 |
|- ( ( B e. RR* /\ Y <_ B ) -> ( A (,) Y ) C_ ( A (,) B ) ) |
| 46 |
40 44 45
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( A (,) Y ) C_ ( A (,) B ) ) |
| 47 |
39 46
|
sstrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X (,) Y ) C_ ( A (,) B ) ) |
| 48 |
30 47
|
fssresd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D F ) |` ( X (,) Y ) ) : ( X (,) Y ) --> S ) |
| 49 |
|
ax-resscn |
|- RR C_ CC |
| 50 |
49
|
a1i |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> RR C_ CC ) |
| 51 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 52 |
3 51
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F : ( A [,] B ) --> RR ) |
| 54 |
|
fss |
|- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
| 55 |
53 49 54
|
sylancl |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F : ( A [,] B ) --> CC ) |
| 56 |
|
iccssre |
|- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
| 57 |
13 14 56
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X [,] Y ) C_ RR ) |
| 58 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 59 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 60 |
58 59
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( X [,] Y ) C_ RR ) ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) ) |
| 61 |
50 55 12 57 60
|
syl22anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) ) |
| 62 |
|
iccntr |
|- ( ( X e. RR /\ Y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
| 63 |
13 14 62
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
| 64 |
63
|
reseq2d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( X (,) Y ) ) ) |
| 65 |
61 64
|
eqtrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( X (,) Y ) ) ) |
| 66 |
65
|
feq1d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D ( F |` ( X [,] Y ) ) ) : ( X (,) Y ) --> S <-> ( ( RR _D F ) |` ( X (,) Y ) ) : ( X (,) Y ) --> S ) ) |
| 67 |
48 66
|
mpbird |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) : ( X (,) Y ) --> S ) |
| 68 |
67
|
fdmd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> dom ( RR _D ( F |` ( X [,] Y ) ) ) = ( X (,) Y ) ) |
| 69 |
13 14 15 29 68
|
mvth |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> E. z e. ( X (,) Y ) ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) ) |
| 70 |
67
|
ffvelcdmda |
|- ( ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) /\ z e. ( X (,) Y ) ) -> ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) e. S ) |
| 71 |
|
eleq1 |
|- ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) e. S <-> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
| 72 |
70 71
|
syl5ibcom |
|- ( ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) /\ z e. ( X (,) Y ) ) -> ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
| 73 |
72
|
rexlimdva |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( E. z e. ( X (,) Y ) ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
| 74 |
69 73
|
mpd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) |
| 75 |
24 74
|
eqeltrrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. S ) |