| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspun.k |
|- K = ( L |`s F ) |
| 2 |
|
fldextrspun.i |
|- I = ( L |`s G ) |
| 3 |
|
fldextrspun.j |
|- J = ( L |`s H ) |
| 4 |
|
fldextrspun.2 |
|- ( ph -> L e. Field ) |
| 5 |
|
fldextrspun.3 |
|- ( ph -> F e. ( SubDRing ` I ) ) |
| 6 |
|
fldextrspun.4 |
|- ( ph -> F e. ( SubDRing ` J ) ) |
| 7 |
|
fldextrspun.5 |
|- ( ph -> G e. ( SubDRing ` L ) ) |
| 8 |
|
fldextrspun.6 |
|- ( ph -> H e. ( SubDRing ` L ) ) |
| 9 |
|
fldext2rspun.n |
|- ( ph -> N e. NN0 ) |
| 10 |
|
fldext2rspun.1 |
|- ( ph -> ( I [:] K ) = 2 ) |
| 11 |
|
fldext2rspun.2 |
|- ( ph -> ( J [:] K ) = ( 2 ^ N ) ) |
| 12 |
|
fldext2rspun.e |
|- E = ( L |`s ( L fldGen ( G u. H ) ) ) |
| 13 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 14 |
13
|
sdrgss |
|- ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) ) |
| 15 |
8 14
|
syl |
|- ( ph -> H C_ ( Base ` L ) ) |
| 16 |
13 2 12 4 7 15
|
fldgenfldext |
|- ( ph -> E /FldExt I ) |
| 17 |
2 4 7 5 1
|
fldsdrgfldext2 |
|- ( ph -> I /FldExt K ) |
| 18 |
|
extdgmul |
|- ( ( E /FldExt I /\ I /FldExt K ) -> ( E [:] K ) = ( ( E [:] I ) *e ( I [:] K ) ) ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ph -> ( E [:] K ) = ( ( E [:] I ) *e ( I [:] K ) ) ) |
| 20 |
|
2nn |
|- 2 e. NN |
| 21 |
20
|
a1i |
|- ( ph -> 2 e. NN ) |
| 22 |
21 9
|
nnexpcld |
|- ( ph -> ( 2 ^ N ) e. NN ) |
| 23 |
11 22
|
eqeltrd |
|- ( ph -> ( J [:] K ) e. NN ) |
| 24 |
23
|
nnnn0d |
|- ( ph -> ( J [:] K ) e. NN0 ) |
| 25 |
10 20
|
eqeltrdi |
|- ( ph -> ( I [:] K ) e. NN ) |
| 26 |
1 2 3 4 5 6 7 8 24 12 25
|
fldextrspundgdvdslem |
|- ( ph -> ( E [:] I ) e. NN0 ) |
| 27 |
|
elnn0 |
|- ( ( E [:] I ) e. NN0 <-> ( ( E [:] I ) e. NN \/ ( E [:] I ) = 0 ) ) |
| 28 |
26 27
|
sylib |
|- ( ph -> ( ( E [:] I ) e. NN \/ ( E [:] I ) = 0 ) ) |
| 29 |
|
extdggt0 |
|- ( E /FldExt I -> 0 < ( E [:] I ) ) |
| 30 |
16 29
|
syl |
|- ( ph -> 0 < ( E [:] I ) ) |
| 31 |
30
|
gt0ne0d |
|- ( ph -> ( E [:] I ) =/= 0 ) |
| 32 |
31
|
neneqd |
|- ( ph -> -. ( E [:] I ) = 0 ) |
| 33 |
28 32
|
olcnd |
|- ( ph -> ( E [:] I ) e. NN ) |
| 34 |
33
|
nnred |
|- ( ph -> ( E [:] I ) e. RR ) |
| 35 |
25
|
nnred |
|- ( ph -> ( I [:] K ) e. RR ) |
| 36 |
|
rexmul |
|- ( ( ( E [:] I ) e. RR /\ ( I [:] K ) e. RR ) -> ( ( E [:] I ) *e ( I [:] K ) ) = ( ( E [:] I ) x. ( I [:] K ) ) ) |
| 37 |
34 35 36
|
syl2anc |
|- ( ph -> ( ( E [:] I ) *e ( I [:] K ) ) = ( ( E [:] I ) x. ( I [:] K ) ) ) |
| 38 |
19 37
|
eqtrd |
|- ( ph -> ( E [:] K ) = ( ( E [:] I ) x. ( I [:] K ) ) ) |
| 39 |
33 25
|
nnmulcld |
|- ( ph -> ( ( E [:] I ) x. ( I [:] K ) ) e. NN ) |
| 40 |
38 39
|
eqeltrd |
|- ( ph -> ( E [:] K ) e. NN ) |
| 41 |
|
2nn0 |
|- 2 e. NN0 |
| 42 |
10 41
|
eqeltrdi |
|- ( ph -> ( I [:] K ) e. NN0 ) |
| 43 |
|
uncom |
|- ( G u. H ) = ( H u. G ) |
| 44 |
43
|
oveq2i |
|- ( L fldGen ( G u. H ) ) = ( L fldGen ( H u. G ) ) |
| 45 |
44
|
oveq2i |
|- ( L |`s ( L fldGen ( G u. H ) ) ) = ( L |`s ( L fldGen ( H u. G ) ) ) |
| 46 |
12 45
|
eqtri |
|- E = ( L |`s ( L fldGen ( H u. G ) ) ) |
| 47 |
1 3 2 4 6 5 8 7 42 46 23
|
fldextrspundgdvds |
|- ( ph -> ( J [:] K ) || ( E [:] K ) ) |
| 48 |
11 47
|
eqbrtrrd |
|- ( ph -> ( 2 ^ N ) || ( E [:] K ) ) |
| 49 |
1 2 3 4 5 6 7 8 24 12
|
fldextrspundglemul |
|- ( ph -> ( E [:] K ) <_ ( ( I [:] K ) *e ( J [:] K ) ) ) |
| 50 |
23
|
nnred |
|- ( ph -> ( J [:] K ) e. RR ) |
| 51 |
|
rexmul |
|- ( ( ( I [:] K ) e. RR /\ ( J [:] K ) e. RR ) -> ( ( I [:] K ) *e ( J [:] K ) ) = ( ( I [:] K ) x. ( J [:] K ) ) ) |
| 52 |
35 50 51
|
syl2anc |
|- ( ph -> ( ( I [:] K ) *e ( J [:] K ) ) = ( ( I [:] K ) x. ( J [:] K ) ) ) |
| 53 |
10 11
|
oveq12d |
|- ( ph -> ( ( I [:] K ) x. ( J [:] K ) ) = ( 2 x. ( 2 ^ N ) ) ) |
| 54 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 55 |
54 9
|
expcld |
|- ( ph -> ( 2 ^ N ) e. CC ) |
| 56 |
54 55
|
mulcomd |
|- ( ph -> ( 2 x. ( 2 ^ N ) ) = ( ( 2 ^ N ) x. 2 ) ) |
| 57 |
54 9
|
expp1d |
|- ( ph -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
| 58 |
56 57
|
eqtr4d |
|- ( ph -> ( 2 x. ( 2 ^ N ) ) = ( 2 ^ ( N + 1 ) ) ) |
| 59 |
52 53 58
|
3eqtrd |
|- ( ph -> ( ( I [:] K ) *e ( J [:] K ) ) = ( 2 ^ ( N + 1 ) ) ) |
| 60 |
49 59
|
breqtrd |
|- ( ph -> ( E [:] K ) <_ ( 2 ^ ( N + 1 ) ) ) |
| 61 |
40 9 48 60
|
2exple2exp |
|- ( ph -> E. n e. NN0 ( E [:] K ) = ( 2 ^ n ) ) |