| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspun.k |
⊢ 𝐾 = ( 𝐿 ↾s 𝐹 ) |
| 2 |
|
fldextrspun.i |
⊢ 𝐼 = ( 𝐿 ↾s 𝐺 ) |
| 3 |
|
fldextrspun.j |
⊢ 𝐽 = ( 𝐿 ↾s 𝐻 ) |
| 4 |
|
fldextrspun.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 5 |
|
fldextrspun.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 6 |
|
fldextrspun.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 7 |
|
fldextrspun.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 8 |
|
fldextrspun.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 9 |
|
fldext2rspun.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 10 |
|
fldext2rspun.1 |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) = 2 ) |
| 11 |
|
fldext2rspun.2 |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) = ( 2 ↑ 𝑁 ) ) |
| 12 |
|
fldext2rspun.e |
⊢ 𝐸 = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 14 |
13
|
sdrgss |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 15 |
8 14
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 16 |
13 2 12 4 7 15
|
fldgenfldext |
⊢ ( 𝜑 → 𝐸 /FldExt 𝐼 ) |
| 17 |
2 4 7 5 1
|
fldsdrgfldext2 |
⊢ ( 𝜑 → 𝐼 /FldExt 𝐾 ) |
| 18 |
|
extdgmul |
⊢ ( ( 𝐸 /FldExt 𝐼 ∧ 𝐼 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 20 |
|
2nn |
⊢ 2 ∈ ℕ |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 22 |
21 9
|
nnexpcld |
⊢ ( 𝜑 → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
| 23 |
11 22
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ ) |
| 24 |
23
|
nnnn0d |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 25 |
10 20
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℕ ) |
| 26 |
1 2 3 4 5 6 7 8 24 12 25
|
fldextrspundgdvdslem |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℕ0 ) |
| 27 |
|
elnn0 |
⊢ ( ( 𝐸 [:] 𝐼 ) ∈ ℕ0 ↔ ( ( 𝐸 [:] 𝐼 ) ∈ ℕ ∨ ( 𝐸 [:] 𝐼 ) = 0 ) ) |
| 28 |
26 27
|
sylib |
⊢ ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) ∈ ℕ ∨ ( 𝐸 [:] 𝐼 ) = 0 ) ) |
| 29 |
|
extdggt0 |
⊢ ( 𝐸 /FldExt 𝐼 → 0 < ( 𝐸 [:] 𝐼 ) ) |
| 30 |
16 29
|
syl |
⊢ ( 𝜑 → 0 < ( 𝐸 [:] 𝐼 ) ) |
| 31 |
30
|
gt0ne0d |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ≠ 0 ) |
| 32 |
31
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝐸 [:] 𝐼 ) = 0 ) |
| 33 |
28 32
|
olcnd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℕ ) |
| 34 |
33
|
nnred |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℝ ) |
| 35 |
25
|
nnred |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℝ ) |
| 36 |
|
rexmul |
⊢ ( ( ( 𝐸 [:] 𝐼 ) ∈ ℝ ∧ ( 𝐼 [:] 𝐾 ) ∈ ℝ ) → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) ) |
| 37 |
34 35 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) ) |
| 38 |
19 37
|
eqtrd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) ) |
| 39 |
33 25
|
nnmulcld |
⊢ ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) ∈ ℕ ) |
| 40 |
38 39
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ∈ ℕ ) |
| 41 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 42 |
10 41
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℕ0 ) |
| 43 |
|
uncom |
⊢ ( 𝐺 ∪ 𝐻 ) = ( 𝐻 ∪ 𝐺 ) |
| 44 |
43
|
oveq2i |
⊢ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) = ( 𝐿 fldGen ( 𝐻 ∪ 𝐺 ) ) |
| 45 |
44
|
oveq2i |
⊢ ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐻 ∪ 𝐺 ) ) ) |
| 46 |
12 45
|
eqtri |
⊢ 𝐸 = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐻 ∪ 𝐺 ) ) ) |
| 47 |
1 3 2 4 6 5 8 7 42 46 23
|
fldextrspundgdvds |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∥ ( 𝐸 [:] 𝐾 ) ) |
| 48 |
11 47
|
eqbrtrrd |
⊢ ( 𝜑 → ( 2 ↑ 𝑁 ) ∥ ( 𝐸 [:] 𝐾 ) ) |
| 49 |
1 2 3 4 5 6 7 8 24 12
|
fldextrspundglemul |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ≤ ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) ) |
| 50 |
23
|
nnred |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℝ ) |
| 51 |
|
rexmul |
⊢ ( ( ( 𝐼 [:] 𝐾 ) ∈ ℝ ∧ ( 𝐽 [:] 𝐾 ) ∈ ℝ ) → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ) |
| 52 |
35 50 51
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ) |
| 53 |
10 11
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) = ( 2 · ( 2 ↑ 𝑁 ) ) ) |
| 54 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 55 |
54 9
|
expcld |
⊢ ( 𝜑 → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 56 |
54 55
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( 2 ↑ 𝑁 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 57 |
54 9
|
expp1d |
⊢ ( 𝜑 → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 58 |
56 57
|
eqtr4d |
⊢ ( 𝜑 → ( 2 · ( 2 ↑ 𝑁 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 59 |
52 53 58
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 60 |
49 59
|
breqtrd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ≤ ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 61 |
40 9 48 60
|
2exple2exp |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐸 [:] 𝐾 ) = ( 2 ↑ 𝑛 ) ) |