Metamath Proof Explorer


Theorem fldext2rspun

Description: Given two field extensions I / K and J / K , I / K being a quadratic extension, and the degree of J / K being a power of 2 , the degree of the extension E / K is a power of 2 , E being the composite field I J . (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldextrspun.k 𝐾 = ( 𝐿s 𝐹 )
fldextrspun.i 𝐼 = ( 𝐿s 𝐺 )
fldextrspun.j 𝐽 = ( 𝐿s 𝐻 )
fldextrspun.2 ( 𝜑𝐿 ∈ Field )
fldextrspun.3 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐼 ) )
fldextrspun.4 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐽 ) )
fldextrspun.5 ( 𝜑𝐺 ∈ ( SubDRing ‘ 𝐿 ) )
fldextrspun.6 ( 𝜑𝐻 ∈ ( SubDRing ‘ 𝐿 ) )
fldext2rspun.n ( 𝜑𝑁 ∈ ℕ0 )
fldext2rspun.1 ( 𝜑 → ( 𝐼 [:] 𝐾 ) = 2 )
fldext2rspun.2 ( 𝜑 → ( 𝐽 [:] 𝐾 ) = ( 2 ↑ 𝑁 ) )
fldext2rspun.e 𝐸 = ( 𝐿s ( 𝐿 fldGen ( 𝐺𝐻 ) ) )
Assertion fldext2rspun ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐸 [:] 𝐾 ) = ( 2 ↑ 𝑛 ) )

Proof

Step Hyp Ref Expression
1 fldextrspun.k 𝐾 = ( 𝐿s 𝐹 )
2 fldextrspun.i 𝐼 = ( 𝐿s 𝐺 )
3 fldextrspun.j 𝐽 = ( 𝐿s 𝐻 )
4 fldextrspun.2 ( 𝜑𝐿 ∈ Field )
5 fldextrspun.3 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐼 ) )
6 fldextrspun.4 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐽 ) )
7 fldextrspun.5 ( 𝜑𝐺 ∈ ( SubDRing ‘ 𝐿 ) )
8 fldextrspun.6 ( 𝜑𝐻 ∈ ( SubDRing ‘ 𝐿 ) )
9 fldext2rspun.n ( 𝜑𝑁 ∈ ℕ0 )
10 fldext2rspun.1 ( 𝜑 → ( 𝐼 [:] 𝐾 ) = 2 )
11 fldext2rspun.2 ( 𝜑 → ( 𝐽 [:] 𝐾 ) = ( 2 ↑ 𝑁 ) )
12 fldext2rspun.e 𝐸 = ( 𝐿s ( 𝐿 fldGen ( 𝐺𝐻 ) ) )
13 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
14 13 sdrgss ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) )
15 8 14 syl ( 𝜑𝐻 ⊆ ( Base ‘ 𝐿 ) )
16 13 2 12 4 7 15 fldgenfldext ( 𝜑𝐸 /FldExt 𝐼 )
17 2 4 7 5 1 fldsdrgfldext2 ( 𝜑𝐼 /FldExt 𝐾 )
18 extdgmul ( ( 𝐸 /FldExt 𝐼𝐼 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) )
19 16 17 18 syl2anc ( 𝜑 → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) )
20 2nn 2 ∈ ℕ
21 20 a1i ( 𝜑 → 2 ∈ ℕ )
22 21 9 nnexpcld ( 𝜑 → ( 2 ↑ 𝑁 ) ∈ ℕ )
23 11 22 eqeltrd ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ )
24 23 nnnn0d ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 )
25 10 20 eqeltrdi ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℕ )
26 1 2 3 4 5 6 7 8 24 12 25 fldextrspundgdvdslem ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℕ0 )
27 elnn0 ( ( 𝐸 [:] 𝐼 ) ∈ ℕ0 ↔ ( ( 𝐸 [:] 𝐼 ) ∈ ℕ ∨ ( 𝐸 [:] 𝐼 ) = 0 ) )
28 26 27 sylib ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) ∈ ℕ ∨ ( 𝐸 [:] 𝐼 ) = 0 ) )
29 extdggt0 ( 𝐸 /FldExt 𝐼 → 0 < ( 𝐸 [:] 𝐼 ) )
30 16 29 syl ( 𝜑 → 0 < ( 𝐸 [:] 𝐼 ) )
31 30 gt0ne0d ( 𝜑 → ( 𝐸 [:] 𝐼 ) ≠ 0 )
32 31 neneqd ( 𝜑 → ¬ ( 𝐸 [:] 𝐼 ) = 0 )
33 28 32 olcnd ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℕ )
34 33 nnred ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℝ )
35 25 nnred ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℝ )
36 rexmul ( ( ( 𝐸 [:] 𝐼 ) ∈ ℝ ∧ ( 𝐼 [:] 𝐾 ) ∈ ℝ ) → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) )
37 34 35 36 syl2anc ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) )
38 19 37 eqtrd ( 𝜑 → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) )
39 33 25 nnmulcld ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) ∈ ℕ )
40 38 39 eqeltrd ( 𝜑 → ( 𝐸 [:] 𝐾 ) ∈ ℕ )
41 2nn0 2 ∈ ℕ0
42 10 41 eqeltrdi ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℕ0 )
43 uncom ( 𝐺𝐻 ) = ( 𝐻𝐺 )
44 43 oveq2i ( 𝐿 fldGen ( 𝐺𝐻 ) ) = ( 𝐿 fldGen ( 𝐻𝐺 ) )
45 44 oveq2i ( 𝐿s ( 𝐿 fldGen ( 𝐺𝐻 ) ) ) = ( 𝐿s ( 𝐿 fldGen ( 𝐻𝐺 ) ) )
46 12 45 eqtri 𝐸 = ( 𝐿s ( 𝐿 fldGen ( 𝐻𝐺 ) ) )
47 1 3 2 4 6 5 8 7 42 46 23 fldextrspundgdvds ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∥ ( 𝐸 [:] 𝐾 ) )
48 11 47 eqbrtrrd ( 𝜑 → ( 2 ↑ 𝑁 ) ∥ ( 𝐸 [:] 𝐾 ) )
49 1 2 3 4 5 6 7 8 24 12 fldextrspundglemul ( 𝜑 → ( 𝐸 [:] 𝐾 ) ≤ ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) )
50 23 nnred ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℝ )
51 rexmul ( ( ( 𝐼 [:] 𝐾 ) ∈ ℝ ∧ ( 𝐽 [:] 𝐾 ) ∈ ℝ ) → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) )
52 35 50 51 syl2anc ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) )
53 10 11 oveq12d ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) = ( 2 · ( 2 ↑ 𝑁 ) ) )
54 2cnd ( 𝜑 → 2 ∈ ℂ )
55 54 9 expcld ( 𝜑 → ( 2 ↑ 𝑁 ) ∈ ℂ )
56 54 55 mulcomd ( 𝜑 → ( 2 · ( 2 ↑ 𝑁 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) )
57 54 9 expp1d ( 𝜑 → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) )
58 56 57 eqtr4d ( 𝜑 → ( 2 · ( 2 ↑ 𝑁 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) )
59 52 53 58 3eqtrd ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) )
60 49 59 breqtrd ( 𝜑 → ( 𝐸 [:] 𝐾 ) ≤ ( 2 ↑ ( 𝑁 + 1 ) ) )
61 40 9 48 60 2exple2exp ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐸 [:] 𝐾 ) = ( 2 ↑ 𝑛 ) )