Metamath Proof Explorer


Theorem fldext2rspun

Description: Given two field extensions I / K and J / K , I / K being a quadratic extension, and the degree of J / K being a power of 2 , the degree of the extension E / K is a power of 2 , E being the composite field I J . (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldextrspun.k K = L 𝑠 F
fldextrspun.i I = L 𝑠 G
fldextrspun.j J = L 𝑠 H
fldextrspun.2 φ L Field
fldextrspun.3 φ F SubDRing I
fldextrspun.4 φ F SubDRing J
fldextrspun.5 φ G SubDRing L
fldextrspun.6 φ H SubDRing L
fldext2rspun.n φ N 0
fldext2rspun.1 φ I .:. K = 2
fldext2rspun.2 φ J .:. K = 2 N
fldext2rspun.e E = L 𝑠 L fldGen G H
Assertion fldext2rspun φ n 0 E .:. K = 2 n

Proof

Step Hyp Ref Expression
1 fldextrspun.k K = L 𝑠 F
2 fldextrspun.i I = L 𝑠 G
3 fldextrspun.j J = L 𝑠 H
4 fldextrspun.2 φ L Field
5 fldextrspun.3 φ F SubDRing I
6 fldextrspun.4 φ F SubDRing J
7 fldextrspun.5 φ G SubDRing L
8 fldextrspun.6 φ H SubDRing L
9 fldext2rspun.n φ N 0
10 fldext2rspun.1 φ I .:. K = 2
11 fldext2rspun.2 φ J .:. K = 2 N
12 fldext2rspun.e E = L 𝑠 L fldGen G H
13 eqid Base L = Base L
14 13 sdrgss H SubDRing L H Base L
15 8 14 syl φ H Base L
16 13 2 12 4 7 15 fldgenfldext φ E /FldExt I
17 2 4 7 5 1 fldsdrgfldext2 φ I /FldExt K
18 extdgmul E /FldExt I I /FldExt K E .:. K = E : I 𝑒 I : K
19 16 17 18 syl2anc φ E .:. K = E : I 𝑒 I : K
20 2nn 2
21 20 a1i φ 2
22 21 9 nnexpcld φ 2 N
23 11 22 eqeltrd φ J .:. K
24 23 nnnn0d φ J .:. K 0
25 10 20 eqeltrdi φ I .:. K
26 1 2 3 4 5 6 7 8 24 12 25 fldextrspundgdvdslem φ E .:. I 0
27 elnn0 E .:. I 0 E .:. I E .:. I = 0
28 26 27 sylib φ E .:. I E .:. I = 0
29 extdggt0 E /FldExt I 0 < E .:. I
30 16 29 syl φ 0 < E .:. I
31 30 gt0ne0d φ E .:. I 0
32 31 neneqd φ ¬ E .:. I = 0
33 28 32 olcnd φ E .:. I
34 33 nnred φ E .:. I
35 25 nnred φ I .:. K
36 rexmul E .:. I I .:. K E : I 𝑒 I : K = E : I I : K
37 34 35 36 syl2anc φ E : I 𝑒 I : K = E : I I : K
38 19 37 eqtrd φ E .:. K = E : I I : K
39 33 25 nnmulcld φ E : I I : K
40 38 39 eqeltrd φ E .:. K
41 2nn0 2 0
42 10 41 eqeltrdi φ I .:. K 0
43 uncom G H = H G
44 43 oveq2i L fldGen G H = L fldGen H G
45 44 oveq2i L 𝑠 L fldGen G H = L 𝑠 L fldGen H G
46 12 45 eqtri E = L 𝑠 L fldGen H G
47 1 3 2 4 6 5 8 7 42 46 23 fldextrspundgdvds φ J : K E : K
48 11 47 eqbrtrrd φ 2 N E : K
49 1 2 3 4 5 6 7 8 24 12 fldextrspundglemul φ E .:. K I : K 𝑒 J : K
50 23 nnred φ J .:. K
51 rexmul I .:. K J .:. K I : K 𝑒 J : K = I : K J : K
52 35 50 51 syl2anc φ I : K 𝑒 J : K = I : K J : K
53 10 11 oveq12d φ I : K J : K = 2 2 N
54 2cnd φ 2
55 54 9 expcld φ 2 N
56 54 55 mulcomd φ 2 2 N = 2 N 2
57 54 9 expp1d φ 2 N + 1 = 2 N 2
58 56 57 eqtr4d φ 2 2 N = 2 N + 1
59 52 53 58 3eqtrd φ I : K 𝑒 J : K = 2 N + 1
60 49 59 breqtrd φ E .:. K 2 N + 1
61 40 9 48 60 2exple2exp φ n 0 E .:. K = 2 n