| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspun.k |
⊢ 𝐾 = ( 𝐿 ↾s 𝐹 ) |
| 2 |
|
fldextrspun.i |
⊢ 𝐼 = ( 𝐿 ↾s 𝐺 ) |
| 3 |
|
fldextrspun.j |
⊢ 𝐽 = ( 𝐿 ↾s 𝐻 ) |
| 4 |
|
fldextrspun.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 5 |
|
fldextrspun.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 6 |
|
fldextrspun.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 7 |
|
fldextrspun.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 8 |
|
fldextrspun.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 9 |
|
fldextrspundglemul.7 |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 10 |
|
fldextrspundglemul.1 |
⊢ 𝐸 = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 11 |
|
fldextrspundgledvds.1 |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℕ ) |
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
fldextrspundgdvdslem |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℕ0 ) |
| 13 |
12
|
nn0zd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℤ ) |
| 14 |
11
|
nnzd |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℤ ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 16 |
4
|
flddrngd |
⊢ ( 𝜑 → 𝐿 ∈ DivRing ) |
| 17 |
15
|
sdrgss |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 18 |
7 17
|
syl |
⊢ ( 𝜑 → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 19 |
15
|
sdrgss |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 20 |
8 19
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 21 |
18 20
|
unssd |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ ( Base ‘ 𝐿 ) ) |
| 22 |
15 16 21
|
fldgensdrg |
⊢ ( 𝜑 → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∈ ( SubDRing ‘ 𝐿 ) ) |
| 23 |
|
eqid |
⊢ ( RingSpan ‘ 𝐿 ) = ( RingSpan ‘ 𝐿 ) |
| 24 |
|
eqid |
⊢ ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) = ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) |
| 25 |
|
eqid |
⊢ ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) = ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 26 |
1 2 3 4 5 6 7 8 9 23 24 25
|
fldextrspunlem2 |
⊢ ( 𝜑 → ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) = ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) ) |
| 28 |
10 27
|
eqtr4id |
⊢ ( 𝜑 → 𝐸 = ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) ) |
| 29 |
1 2 3 4 5 6 7 8 9 23 24 25
|
fldextrspunfld |
⊢ ( 𝜑 → ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) ∈ Field ) |
| 30 |
28 29
|
eqeltrd |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 31 |
30
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 32 |
31
|
drngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 33 |
10
|
oveq1i |
⊢ ( 𝐸 ↾s 𝐹 ) = ( ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) ↾s 𝐹 ) |
| 34 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∈ V ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
| 36 |
35
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐼 ) → 𝐹 ⊆ ( Base ‘ 𝐼 ) ) |
| 37 |
5 36
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐼 ) ) |
| 38 |
2 15
|
ressbas2 |
⊢ ( 𝐺 ⊆ ( Base ‘ 𝐿 ) → 𝐺 = ( Base ‘ 𝐼 ) ) |
| 39 |
18 38
|
syl |
⊢ ( 𝜑 → 𝐺 = ( Base ‘ 𝐼 ) ) |
| 40 |
37 39
|
sseqtrrd |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐺 ) |
| 41 |
|
ssun1 |
⊢ 𝐺 ⊆ ( 𝐺 ∪ 𝐻 ) |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → 𝐺 ⊆ ( 𝐺 ∪ 𝐻 ) ) |
| 43 |
40 42
|
sstrd |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐺 ∪ 𝐻 ) ) |
| 44 |
15 16 21
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 45 |
43 44
|
sstrd |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 46 |
|
ressabs |
⊢ ( ( ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∈ V ∧ 𝐹 ⊆ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) → ( ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 47 |
34 45 46
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 48 |
33 47
|
eqtrid |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 49 |
2
|
oveq1i |
⊢ ( 𝐼 ↾s 𝐹 ) = ( ( 𝐿 ↾s 𝐺 ) ↾s 𝐹 ) |
| 50 |
|
ressabs |
⊢ ( ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ∧ 𝐹 ⊆ 𝐺 ) → ( ( 𝐿 ↾s 𝐺 ) ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 51 |
7 40 50
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ↾s 𝐺 ) ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 52 |
49 51
|
eqtrid |
⊢ ( 𝜑 → ( 𝐼 ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 53 |
48 52
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) = ( 𝐼 ↾s 𝐹 ) ) |
| 54 |
|
eqid |
⊢ ( 𝐼 ↾s 𝐹 ) = ( 𝐼 ↾s 𝐹 ) |
| 55 |
54
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐼 ) → ( 𝐼 ↾s 𝐹 ) ∈ DivRing ) |
| 56 |
5 55
|
syl |
⊢ ( 𝜑 → ( 𝐼 ↾s 𝐹 ) ∈ DivRing ) |
| 57 |
53 56
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 58 |
57
|
drngringd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 59 |
15 16 21
|
fldgenssv |
⊢ ( 𝜑 → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ⊆ ( Base ‘ 𝐿 ) ) |
| 60 |
10 15
|
ressbas2 |
⊢ ( ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ⊆ ( Base ‘ 𝐿 ) → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) = ( Base ‘ 𝐸 ) ) |
| 61 |
59 60
|
syl |
⊢ ( 𝜑 → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) = ( Base ‘ 𝐸 ) ) |
| 62 |
45 61
|
sseqtrd |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
| 63 |
16
|
drngringd |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
| 64 |
42 44
|
sstrd |
⊢ ( 𝜑 → 𝐺 ⊆ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 65 |
|
sdrgsubrg |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ∈ ( SubRing ‘ 𝐿 ) ) |
| 66 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
| 67 |
66
|
subrg1cl |
⊢ ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) → ( 1r ‘ 𝐿 ) ∈ 𝐺 ) |
| 68 |
7 65 67
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐿 ) ∈ 𝐺 ) |
| 69 |
64 68
|
sseldd |
⊢ ( 𝜑 → ( 1r ‘ 𝐿 ) ∈ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 70 |
10 15 66
|
ress1r |
⊢ ( ( 𝐿 ∈ Ring ∧ ( 1r ‘ 𝐿 ) ∈ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∧ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ⊆ ( Base ‘ 𝐿 ) ) → ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐸 ) ) |
| 71 |
63 69 59 70
|
syl3anc |
⊢ ( 𝜑 → ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐸 ) ) |
| 72 |
2 15 66
|
ress1r |
⊢ ( ( 𝐿 ∈ Ring ∧ ( 1r ‘ 𝐿 ) ∈ 𝐺 ∧ 𝐺 ⊆ ( Base ‘ 𝐿 ) ) → ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐼 ) ) |
| 73 |
63 68 18 72
|
syl3anc |
⊢ ( 𝜑 → ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐼 ) ) |
| 74 |
71 73
|
eqtr3d |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐼 ) ) |
| 75 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐼 ) → 𝐹 ∈ ( SubRing ‘ 𝐼 ) ) |
| 76 |
|
eqid |
⊢ ( 1r ‘ 𝐼 ) = ( 1r ‘ 𝐼 ) |
| 77 |
76
|
subrg1cl |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐼 ) → ( 1r ‘ 𝐼 ) ∈ 𝐹 ) |
| 78 |
5 75 77
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐼 ) ∈ 𝐹 ) |
| 79 |
74 78
|
eqeltrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ∈ 𝐹 ) |
| 80 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 81 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
| 82 |
80 81
|
issubrg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) ↔ ( ( 𝐸 ∈ Ring ∧ ( 𝐸 ↾s 𝐹 ) ∈ Ring ) ∧ ( 𝐹 ⊆ ( Base ‘ 𝐸 ) ∧ ( 1r ‘ 𝐸 ) ∈ 𝐹 ) ) ) |
| 83 |
32 58 62 79 82
|
syl22anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 84 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
| 85 |
31 83 57 84
|
syl3anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 86 |
10 4 22 85 1
|
fldsdrgfldext2 |
⊢ ( 𝜑 → 𝐸 /FldExt 𝐾 ) |
| 87 |
|
extdgcl |
⊢ ( 𝐸 /FldExt 𝐾 → ( 𝐸 [:] 𝐾 ) ∈ ℕ0* ) |
| 88 |
86 87
|
syl |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ∈ ℕ0* ) |
| 89 |
11
|
nnnn0d |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℕ0 ) |
| 90 |
89 9
|
nn0mulcld |
⊢ ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ∈ ℕ0 ) |
| 91 |
1 2 3 4 5 6 7 8 9 10
|
fldextrspundglemul |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ≤ ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) ) |
| 92 |
11
|
nnred |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℝ ) |
| 93 |
9
|
nn0red |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℝ ) |
| 94 |
|
rexmul |
⊢ ( ( ( 𝐼 [:] 𝐾 ) ∈ ℝ ∧ ( 𝐽 [:] 𝐾 ) ∈ ℝ ) → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ) |
| 95 |
92 93 94
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ) |
| 96 |
91 95
|
breqtrd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ≤ ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ) |
| 97 |
|
xnn0lenn0nn0 |
⊢ ( ( ( 𝐸 [:] 𝐾 ) ∈ ℕ0* ∧ ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ∈ ℕ0 ∧ ( 𝐸 [:] 𝐾 ) ≤ ( ( 𝐼 [:] 𝐾 ) · ( 𝐽 [:] 𝐾 ) ) ) → ( 𝐸 [:] 𝐾 ) ∈ ℕ0 ) |
| 98 |
88 90 96 97
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ∈ ℕ0 ) |
| 99 |
98
|
nn0zd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ∈ ℤ ) |
| 100 |
15 2 10 4 7 20
|
fldgenfldext |
⊢ ( 𝜑 → 𝐸 /FldExt 𝐼 ) |
| 101 |
2 4 7 5 1
|
fldsdrgfldext2 |
⊢ ( 𝜑 → 𝐼 /FldExt 𝐾 ) |
| 102 |
|
extdgmul |
⊢ ( ( 𝐸 /FldExt 𝐼 ∧ 𝐼 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 103 |
100 101 102
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 104 |
12
|
nn0red |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℝ ) |
| 105 |
|
rexmul |
⊢ ( ( ( 𝐸 [:] 𝐼 ) ∈ ℝ ∧ ( 𝐼 [:] 𝐾 ) ∈ ℝ ) → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) ) |
| 106 |
104 92 105
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) = ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) ) |
| 107 |
103 106
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) = ( 𝐸 [:] 𝐾 ) ) |
| 108 |
|
dvds0lem |
⊢ ( ( ( ( 𝐸 [:] 𝐼 ) ∈ ℤ ∧ ( 𝐼 [:] 𝐾 ) ∈ ℤ ∧ ( 𝐸 [:] 𝐾 ) ∈ ℤ ) ∧ ( ( 𝐸 [:] 𝐼 ) · ( 𝐼 [:] 𝐾 ) ) = ( 𝐸 [:] 𝐾 ) ) → ( 𝐼 [:] 𝐾 ) ∥ ( 𝐸 [:] 𝐾 ) ) |
| 109 |
13 14 99 107 108
|
syl31anc |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∥ ( 𝐸 [:] 𝐾 ) ) |