| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fococnv2 |  |-  ( F : A -onto-> B -> ( F o. `' F ) = ( _I |` B ) ) | 
						
							| 2 |  | cnveq |  |-  ( F = G -> `' F = `' G ) | 
						
							| 3 | 2 | coeq2d |  |-  ( F = G -> ( F o. `' F ) = ( F o. `' G ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( F = G -> ( ( F o. `' F ) = ( _I |` B ) <-> ( F o. `' G ) = ( _I |` B ) ) ) | 
						
							| 5 | 1 4 | syl5ibcom |  |-  ( F : A -onto-> B -> ( F = G -> ( F o. `' G ) = ( _I |` B ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( F = G -> ( F o. `' G ) = ( _I |` B ) ) ) | 
						
							| 7 |  | fofn |  |-  ( F : A -onto-> B -> F Fn A ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> F Fn A ) | 
						
							| 9 |  | fofn |  |-  ( G : A -onto-> B -> G Fn A ) | 
						
							| 10 | 9 | ad2antlr |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> G Fn A ) | 
						
							| 11 | 9 | adantl |  |-  ( ( F : A -onto-> B /\ G : A -onto-> B ) -> G Fn A ) | 
						
							| 12 |  | fnopfv |  |-  ( ( G Fn A /\ x e. A ) -> <. x , ( G ` x ) >. e. G ) | 
						
							| 13 | 11 12 | sylan |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> <. x , ( G ` x ) >. e. G ) | 
						
							| 14 |  | fvex |  |-  ( G ` x ) e. _V | 
						
							| 15 |  | vex |  |-  x e. _V | 
						
							| 16 | 14 15 | brcnv |  |-  ( ( G ` x ) `' G x <-> x G ( G ` x ) ) | 
						
							| 17 |  | df-br |  |-  ( x G ( G ` x ) <-> <. x , ( G ` x ) >. e. G ) | 
						
							| 18 | 16 17 | bitri |  |-  ( ( G ` x ) `' G x <-> <. x , ( G ` x ) >. e. G ) | 
						
							| 19 | 13 18 | sylibr |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) `' G x ) | 
						
							| 20 | 7 | adantr |  |-  ( ( F : A -onto-> B /\ G : A -onto-> B ) -> F Fn A ) | 
						
							| 21 |  | fnopfv |  |-  ( ( F Fn A /\ x e. A ) -> <. x , ( F ` x ) >. e. F ) | 
						
							| 22 | 20 21 | sylan |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> <. x , ( F ` x ) >. e. F ) | 
						
							| 23 |  | df-br |  |-  ( x F ( F ` x ) <-> <. x , ( F ` x ) >. e. F ) | 
						
							| 24 | 22 23 | sylibr |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> x F ( F ` x ) ) | 
						
							| 25 |  | breq2 |  |-  ( y = x -> ( ( G ` x ) `' G y <-> ( G ` x ) `' G x ) ) | 
						
							| 26 |  | breq1 |  |-  ( y = x -> ( y F ( F ` x ) <-> x F ( F ` x ) ) ) | 
						
							| 27 | 25 26 | anbi12d |  |-  ( y = x -> ( ( ( G ` x ) `' G y /\ y F ( F ` x ) ) <-> ( ( G ` x ) `' G x /\ x F ( F ` x ) ) ) ) | 
						
							| 28 | 15 27 | spcev |  |-  ( ( ( G ` x ) `' G x /\ x F ( F ` x ) ) -> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) | 
						
							| 29 | 19 24 28 | syl2anc |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) | 
						
							| 30 |  | fvex |  |-  ( F ` x ) e. _V | 
						
							| 31 | 14 30 | brco |  |-  ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) | 
						
							| 32 | 29 31 | sylibr |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) ( F o. `' G ) ( F ` x ) ) | 
						
							| 33 | 32 | adantlr |  |-  ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) ( F o. `' G ) ( F ` x ) ) | 
						
							| 34 |  | breq |  |-  ( ( F o. `' G ) = ( _I |` B ) -> ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> ( G ` x ) ( _I |` B ) ( F ` x ) ) ) | 
						
							| 35 | 34 | ad2antlr |  |-  ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> ( G ` x ) ( _I |` B ) ( F ` x ) ) ) | 
						
							| 36 | 33 35 | mpbid |  |-  ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) ( _I |` B ) ( F ` x ) ) | 
						
							| 37 |  | fof |  |-  ( G : A -onto-> B -> G : A --> B ) | 
						
							| 38 | 37 | adantl |  |-  ( ( F : A -onto-> B /\ G : A -onto-> B ) -> G : A --> B ) | 
						
							| 39 | 38 | ffvelcdmda |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) e. B ) | 
						
							| 40 |  | fof |  |-  ( F : A -onto-> B -> F : A --> B ) | 
						
							| 41 | 40 | adantr |  |-  ( ( F : A -onto-> B /\ G : A -onto-> B ) -> F : A --> B ) | 
						
							| 42 | 41 | ffvelcdmda |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 43 |  | resieq |  |-  ( ( ( G ` x ) e. B /\ ( F ` x ) e. B ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) | 
						
							| 44 | 39 42 43 | syl2anc |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) | 
						
							| 45 | 44 | adantlr |  |-  ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) | 
						
							| 46 | 36 45 | mpbid |  |-  ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) = ( F ` x ) ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) | 
						
							| 48 | 8 10 47 | eqfnfvd |  |-  ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> F = G ) | 
						
							| 49 | 48 | ex |  |-  ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( ( F o. `' G ) = ( _I |` B ) -> F = G ) ) | 
						
							| 50 | 6 49 | impbid |  |-  ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( F = G <-> ( F o. `' G ) = ( _I |` B ) ) ) |