| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fococnv2 |
|- ( F : A -onto-> B -> ( F o. `' F ) = ( _I |` B ) ) |
| 2 |
|
cnveq |
|- ( F = G -> `' F = `' G ) |
| 3 |
2
|
coeq2d |
|- ( F = G -> ( F o. `' F ) = ( F o. `' G ) ) |
| 4 |
3
|
eqeq1d |
|- ( F = G -> ( ( F o. `' F ) = ( _I |` B ) <-> ( F o. `' G ) = ( _I |` B ) ) ) |
| 5 |
1 4
|
syl5ibcom |
|- ( F : A -onto-> B -> ( F = G -> ( F o. `' G ) = ( _I |` B ) ) ) |
| 6 |
5
|
adantr |
|- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( F = G -> ( F o. `' G ) = ( _I |` B ) ) ) |
| 7 |
|
fofn |
|- ( F : A -onto-> B -> F Fn A ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> F Fn A ) |
| 9 |
|
fofn |
|- ( G : A -onto-> B -> G Fn A ) |
| 10 |
9
|
ad2antlr |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> G Fn A ) |
| 11 |
9
|
adantl |
|- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> G Fn A ) |
| 12 |
|
fnopfv |
|- ( ( G Fn A /\ x e. A ) -> <. x , ( G ` x ) >. e. G ) |
| 13 |
11 12
|
sylan |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> <. x , ( G ` x ) >. e. G ) |
| 14 |
|
fvex |
|- ( G ` x ) e. _V |
| 15 |
|
vex |
|- x e. _V |
| 16 |
14 15
|
brcnv |
|- ( ( G ` x ) `' G x <-> x G ( G ` x ) ) |
| 17 |
|
df-br |
|- ( x G ( G ` x ) <-> <. x , ( G ` x ) >. e. G ) |
| 18 |
16 17
|
bitri |
|- ( ( G ` x ) `' G x <-> <. x , ( G ` x ) >. e. G ) |
| 19 |
13 18
|
sylibr |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) `' G x ) |
| 20 |
7
|
adantr |
|- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> F Fn A ) |
| 21 |
|
fnopfv |
|- ( ( F Fn A /\ x e. A ) -> <. x , ( F ` x ) >. e. F ) |
| 22 |
20 21
|
sylan |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> <. x , ( F ` x ) >. e. F ) |
| 23 |
|
df-br |
|- ( x F ( F ` x ) <-> <. x , ( F ` x ) >. e. F ) |
| 24 |
22 23
|
sylibr |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> x F ( F ` x ) ) |
| 25 |
|
breq2 |
|- ( y = x -> ( ( G ` x ) `' G y <-> ( G ` x ) `' G x ) ) |
| 26 |
|
breq1 |
|- ( y = x -> ( y F ( F ` x ) <-> x F ( F ` x ) ) ) |
| 27 |
25 26
|
anbi12d |
|- ( y = x -> ( ( ( G ` x ) `' G y /\ y F ( F ` x ) ) <-> ( ( G ` x ) `' G x /\ x F ( F ` x ) ) ) ) |
| 28 |
15 27
|
spcev |
|- ( ( ( G ` x ) `' G x /\ x F ( F ` x ) ) -> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) |
| 29 |
19 24 28
|
syl2anc |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) |
| 30 |
|
fvex |
|- ( F ` x ) e. _V |
| 31 |
14 30
|
brco |
|- ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> E. y ( ( G ` x ) `' G y /\ y F ( F ` x ) ) ) |
| 32 |
29 31
|
sylibr |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) ( F o. `' G ) ( F ` x ) ) |
| 33 |
32
|
adantlr |
|- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) ( F o. `' G ) ( F ` x ) ) |
| 34 |
|
breq |
|- ( ( F o. `' G ) = ( _I |` B ) -> ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> ( G ` x ) ( _I |` B ) ( F ` x ) ) ) |
| 35 |
34
|
ad2antlr |
|- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( ( G ` x ) ( F o. `' G ) ( F ` x ) <-> ( G ` x ) ( _I |` B ) ( F ` x ) ) ) |
| 36 |
33 35
|
mpbid |
|- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) ( _I |` B ) ( F ` x ) ) |
| 37 |
|
fof |
|- ( G : A -onto-> B -> G : A --> B ) |
| 38 |
37
|
adantl |
|- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> G : A --> B ) |
| 39 |
38
|
ffvelcdmda |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( G ` x ) e. B ) |
| 40 |
|
fof |
|- ( F : A -onto-> B -> F : A --> B ) |
| 41 |
40
|
adantr |
|- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> F : A --> B ) |
| 42 |
41
|
ffvelcdmda |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( F ` x ) e. B ) |
| 43 |
|
resieq |
|- ( ( ( G ` x ) e. B /\ ( F ` x ) e. B ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) |
| 44 |
39 42 43
|
syl2anc |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ x e. A ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) |
| 45 |
44
|
adantlr |
|- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( ( G ` x ) ( _I |` B ) ( F ` x ) <-> ( G ` x ) = ( F ` x ) ) ) |
| 46 |
36 45
|
mpbid |
|- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( G ` x ) = ( F ` x ) ) |
| 47 |
46
|
eqcomd |
|- ( ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
| 48 |
8 10 47
|
eqfnfvd |
|- ( ( ( F : A -onto-> B /\ G : A -onto-> B ) /\ ( F o. `' G ) = ( _I |` B ) ) -> F = G ) |
| 49 |
48
|
ex |
|- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( ( F o. `' G ) = ( _I |` B ) -> F = G ) ) |
| 50 |
6 49
|
impbid |
|- ( ( F : A -onto-> B /\ G : A -onto-> B ) -> ( F = G <-> ( F o. `' G ) = ( _I |` B ) ) ) |