Metamath Proof Explorer


Theorem foeqcnvco

Description: Condition for function equality in terms of vanishing of the composition with the converse.EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015)

Ref Expression
Assertion foeqcnvco F : A onto B G : A onto B F = G F G -1 = I B

Proof

Step Hyp Ref Expression
1 fococnv2 F : A onto B F F -1 = I B
2 cnveq F = G F -1 = G -1
3 2 coeq2d F = G F F -1 = F G -1
4 3 eqeq1d F = G F F -1 = I B F G -1 = I B
5 1 4 syl5ibcom F : A onto B F = G F G -1 = I B
6 5 adantr F : A onto B G : A onto B F = G F G -1 = I B
7 fofn F : A onto B F Fn A
8 7 ad2antrr F : A onto B G : A onto B F G -1 = I B F Fn A
9 fofn G : A onto B G Fn A
10 9 ad2antlr F : A onto B G : A onto B F G -1 = I B G Fn A
11 9 adantl F : A onto B G : A onto B G Fn A
12 fnopfv G Fn A x A x G x G
13 11 12 sylan F : A onto B G : A onto B x A x G x G
14 fvex G x V
15 vex x V
16 14 15 brcnv G x G -1 x x G G x
17 df-br x G G x x G x G
18 16 17 bitri G x G -1 x x G x G
19 13 18 sylibr F : A onto B G : A onto B x A G x G -1 x
20 7 adantr F : A onto B G : A onto B F Fn A
21 fnopfv F Fn A x A x F x F
22 20 21 sylan F : A onto B G : A onto B x A x F x F
23 df-br x F F x x F x F
24 22 23 sylibr F : A onto B G : A onto B x A x F F x
25 breq2 y = x G x G -1 y G x G -1 x
26 breq1 y = x y F F x x F F x
27 25 26 anbi12d y = x G x G -1 y y F F x G x G -1 x x F F x
28 15 27 spcev G x G -1 x x F F x y G x G -1 y y F F x
29 19 24 28 syl2anc F : A onto B G : A onto B x A y G x G -1 y y F F x
30 fvex F x V
31 14 30 brco G x F G -1 F x y G x G -1 y y F F x
32 29 31 sylibr F : A onto B G : A onto B x A G x F G -1 F x
33 32 adantlr F : A onto B G : A onto B F G -1 = I B x A G x F G -1 F x
34 breq F G -1 = I B G x F G -1 F x G x I B F x
35 34 ad2antlr F : A onto B G : A onto B F G -1 = I B x A G x F G -1 F x G x I B F x
36 33 35 mpbid F : A onto B G : A onto B F G -1 = I B x A G x I B F x
37 fof G : A onto B G : A B
38 37 adantl F : A onto B G : A onto B G : A B
39 38 ffvelrnda F : A onto B G : A onto B x A G x B
40 fof F : A onto B F : A B
41 40 adantr F : A onto B G : A onto B F : A B
42 41 ffvelrnda F : A onto B G : A onto B x A F x B
43 resieq G x B F x B G x I B F x G x = F x
44 39 42 43 syl2anc F : A onto B G : A onto B x A G x I B F x G x = F x
45 44 adantlr F : A onto B G : A onto B F G -1 = I B x A G x I B F x G x = F x
46 36 45 mpbid F : A onto B G : A onto B F G -1 = I B x A G x = F x
47 46 eqcomd F : A onto B G : A onto B F G -1 = I B x A F x = G x
48 8 10 47 eqfnfvd F : A onto B G : A onto B F G -1 = I B F = G
49 48 ex F : A onto B G : A onto B F G -1 = I B F = G
50 6 49 impbid F : A onto B G : A onto B F = G F G -1 = I B