| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmup.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlmup.b |
|- B = ( Base ` F ) |
| 3 |
|
frlmup.c |
|- C = ( Base ` T ) |
| 4 |
|
frlmup.v |
|- .x. = ( .s ` T ) |
| 5 |
|
frlmup.e |
|- E = ( x e. B |-> ( T gsum ( x oF .x. A ) ) ) |
| 6 |
|
frlmup.t |
|- ( ph -> T e. LMod ) |
| 7 |
|
frlmup.i |
|- ( ph -> I e. X ) |
| 8 |
|
frlmup.r |
|- ( ph -> R = ( Scalar ` T ) ) |
| 9 |
|
frlmup.a |
|- ( ph -> A : I --> C ) |
| 10 |
|
frlmup.y |
|- ( ph -> Y e. I ) |
| 11 |
|
frlmup.u |
|- U = ( R unitVec I ) |
| 12 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
| 13 |
12
|
lmodring |
|- ( T e. LMod -> ( Scalar ` T ) e. Ring ) |
| 14 |
6 13
|
syl |
|- ( ph -> ( Scalar ` T ) e. Ring ) |
| 15 |
8 14
|
eqeltrd |
|- ( ph -> R e. Ring ) |
| 16 |
11 1 2
|
uvcff |
|- ( ( R e. Ring /\ I e. X ) -> U : I --> B ) |
| 17 |
15 7 16
|
syl2anc |
|- ( ph -> U : I --> B ) |
| 18 |
17 10
|
ffvelcdmd |
|- ( ph -> ( U ` Y ) e. B ) |
| 19 |
|
oveq1 |
|- ( x = ( U ` Y ) -> ( x oF .x. A ) = ( ( U ` Y ) oF .x. A ) ) |
| 20 |
19
|
oveq2d |
|- ( x = ( U ` Y ) -> ( T gsum ( x oF .x. A ) ) = ( T gsum ( ( U ` Y ) oF .x. A ) ) ) |
| 21 |
|
ovex |
|- ( T gsum ( ( U ` Y ) oF .x. A ) ) e. _V |
| 22 |
20 5 21
|
fvmpt |
|- ( ( U ` Y ) e. B -> ( E ` ( U ` Y ) ) = ( T gsum ( ( U ` Y ) oF .x. A ) ) ) |
| 23 |
18 22
|
syl |
|- ( ph -> ( E ` ( U ` Y ) ) = ( T gsum ( ( U ` Y ) oF .x. A ) ) ) |
| 24 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 25 |
|
lmodcmn |
|- ( T e. LMod -> T e. CMnd ) |
| 26 |
|
cmnmnd |
|- ( T e. CMnd -> T e. Mnd ) |
| 27 |
6 25 26
|
3syl |
|- ( ph -> T e. Mnd ) |
| 28 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
| 29 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 30 |
1 29 2
|
frlmbasf |
|- ( ( I e. X /\ ( U ` Y ) e. B ) -> ( U ` Y ) : I --> ( Base ` R ) ) |
| 31 |
7 18 30
|
syl2anc |
|- ( ph -> ( U ` Y ) : I --> ( Base ` R ) ) |
| 32 |
8
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` T ) ) ) |
| 33 |
32
|
feq3d |
|- ( ph -> ( ( U ` Y ) : I --> ( Base ` R ) <-> ( U ` Y ) : I --> ( Base ` ( Scalar ` T ) ) ) ) |
| 34 |
31 33
|
mpbid |
|- ( ph -> ( U ` Y ) : I --> ( Base ` ( Scalar ` T ) ) ) |
| 35 |
12 28 4 3 6 34 9 7
|
lcomf |
|- ( ph -> ( ( U ` Y ) oF .x. A ) : I --> C ) |
| 36 |
31
|
ffnd |
|- ( ph -> ( U ` Y ) Fn I ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( U ` Y ) Fn I ) |
| 38 |
9
|
ffnd |
|- ( ph -> A Fn I ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> A Fn I ) |
| 40 |
7
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> I e. X ) |
| 41 |
|
eldifi |
|- ( x e. ( I \ { Y } ) -> x e. I ) |
| 42 |
41
|
adantl |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> x e. I ) |
| 43 |
|
fnfvof |
|- ( ( ( ( U ` Y ) Fn I /\ A Fn I ) /\ ( I e. X /\ x e. I ) ) -> ( ( ( U ` Y ) oF .x. A ) ` x ) = ( ( ( U ` Y ) ` x ) .x. ( A ` x ) ) ) |
| 44 |
37 39 40 42 43
|
syl22anc |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( ( U ` Y ) oF .x. A ) ` x ) = ( ( ( U ` Y ) ` x ) .x. ( A ` x ) ) ) |
| 45 |
15
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> R e. Ring ) |
| 46 |
10
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> Y e. I ) |
| 47 |
|
eldifsni |
|- ( x e. ( I \ { Y } ) -> x =/= Y ) |
| 48 |
47
|
necomd |
|- ( x e. ( I \ { Y } ) -> Y =/= x ) |
| 49 |
48
|
adantl |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> Y =/= x ) |
| 50 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 51 |
11 45 40 46 42 49 50
|
uvcvv0 |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( U ` Y ) ` x ) = ( 0g ` R ) ) |
| 52 |
8
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` T ) ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` T ) ) ) |
| 54 |
51 53
|
eqtrd |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( U ` Y ) ` x ) = ( 0g ` ( Scalar ` T ) ) ) |
| 55 |
54
|
oveq1d |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( ( U ` Y ) ` x ) .x. ( A ` x ) ) = ( ( 0g ` ( Scalar ` T ) ) .x. ( A ` x ) ) ) |
| 56 |
6
|
adantr |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> T e. LMod ) |
| 57 |
|
ffvelcdm |
|- ( ( A : I --> C /\ x e. I ) -> ( A ` x ) e. C ) |
| 58 |
9 41 57
|
syl2an |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( A ` x ) e. C ) |
| 59 |
|
eqid |
|- ( 0g ` ( Scalar ` T ) ) = ( 0g ` ( Scalar ` T ) ) |
| 60 |
3 12 4 59 24
|
lmod0vs |
|- ( ( T e. LMod /\ ( A ` x ) e. C ) -> ( ( 0g ` ( Scalar ` T ) ) .x. ( A ` x ) ) = ( 0g ` T ) ) |
| 61 |
56 58 60
|
syl2anc |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( 0g ` ( Scalar ` T ) ) .x. ( A ` x ) ) = ( 0g ` T ) ) |
| 62 |
44 55 61
|
3eqtrd |
|- ( ( ph /\ x e. ( I \ { Y } ) ) -> ( ( ( U ` Y ) oF .x. A ) ` x ) = ( 0g ` T ) ) |
| 63 |
35 62
|
suppss |
|- ( ph -> ( ( ( U ` Y ) oF .x. A ) supp ( 0g ` T ) ) C_ { Y } ) |
| 64 |
3 24 27 7 10 35 63
|
gsumpt |
|- ( ph -> ( T gsum ( ( U ` Y ) oF .x. A ) ) = ( ( ( U ` Y ) oF .x. A ) ` Y ) ) |
| 65 |
|
fnfvof |
|- ( ( ( ( U ` Y ) Fn I /\ A Fn I ) /\ ( I e. X /\ Y e. I ) ) -> ( ( ( U ` Y ) oF .x. A ) ` Y ) = ( ( ( U ` Y ) ` Y ) .x. ( A ` Y ) ) ) |
| 66 |
36 38 7 10 65
|
syl22anc |
|- ( ph -> ( ( ( U ` Y ) oF .x. A ) ` Y ) = ( ( ( U ` Y ) ` Y ) .x. ( A ` Y ) ) ) |
| 67 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 68 |
11 15 7 10 67
|
uvcvv1 |
|- ( ph -> ( ( U ` Y ) ` Y ) = ( 1r ` R ) ) |
| 69 |
8
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` T ) ) ) |
| 70 |
68 69
|
eqtrd |
|- ( ph -> ( ( U ` Y ) ` Y ) = ( 1r ` ( Scalar ` T ) ) ) |
| 71 |
70
|
oveq1d |
|- ( ph -> ( ( ( U ` Y ) ` Y ) .x. ( A ` Y ) ) = ( ( 1r ` ( Scalar ` T ) ) .x. ( A ` Y ) ) ) |
| 72 |
9 10
|
ffvelcdmd |
|- ( ph -> ( A ` Y ) e. C ) |
| 73 |
|
eqid |
|- ( 1r ` ( Scalar ` T ) ) = ( 1r ` ( Scalar ` T ) ) |
| 74 |
3 12 4 73
|
lmodvs1 |
|- ( ( T e. LMod /\ ( A ` Y ) e. C ) -> ( ( 1r ` ( Scalar ` T ) ) .x. ( A ` Y ) ) = ( A ` Y ) ) |
| 75 |
6 72 74
|
syl2anc |
|- ( ph -> ( ( 1r ` ( Scalar ` T ) ) .x. ( A ` Y ) ) = ( A ` Y ) ) |
| 76 |
66 71 75
|
3eqtrd |
|- ( ph -> ( ( ( U ` Y ) oF .x. A ) ` Y ) = ( A ` Y ) ) |
| 77 |
23 64 76
|
3eqtrd |
|- ( ph -> ( E ` ( U ` Y ) ) = ( A ` Y ) ) |