| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzelz |
|- ( x e. ( M ... N ) -> x e. ZZ ) |
| 2 |
1
|
zred |
|- ( x e. ( M ... N ) -> x e. RR ) |
| 3 |
|
elfzelz |
|- ( K e. ( M ... N ) -> K e. ZZ ) |
| 4 |
3
|
zred |
|- ( K e. ( M ... N ) -> K e. RR ) |
| 5 |
|
1red |
|- ( K e. ( M ... N ) -> 1 e. RR ) |
| 6 |
4 5
|
resubcld |
|- ( K e. ( M ... N ) -> ( K - 1 ) e. RR ) |
| 7 |
|
lelttric |
|- ( ( x e. RR /\ ( K - 1 ) e. RR ) -> ( x <_ ( K - 1 ) \/ ( K - 1 ) < x ) ) |
| 8 |
2 6 7
|
syl2anr |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x <_ ( K - 1 ) \/ ( K - 1 ) < x ) ) |
| 9 |
|
elfzuz |
|- ( x e. ( M ... N ) -> x e. ( ZZ>= ` M ) ) |
| 10 |
|
1zzd |
|- ( K e. ( M ... N ) -> 1 e. ZZ ) |
| 11 |
3 10
|
zsubcld |
|- ( K e. ( M ... N ) -> ( K - 1 ) e. ZZ ) |
| 12 |
|
elfz5 |
|- ( ( x e. ( ZZ>= ` M ) /\ ( K - 1 ) e. ZZ ) -> ( x e. ( M ... ( K - 1 ) ) <-> x <_ ( K - 1 ) ) ) |
| 13 |
9 11 12
|
syl2anr |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( M ... ( K - 1 ) ) <-> x <_ ( K - 1 ) ) ) |
| 14 |
|
elfzuz3 |
|- ( x e. ( M ... N ) -> N e. ( ZZ>= ` x ) ) |
| 15 |
14
|
adantl |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> N e. ( ZZ>= ` x ) ) |
| 16 |
|
elfzuzb |
|- ( x e. ( K ... N ) <-> ( x e. ( ZZ>= ` K ) /\ N e. ( ZZ>= ` x ) ) ) |
| 17 |
16
|
rbaib |
|- ( N e. ( ZZ>= ` x ) -> ( x e. ( K ... N ) <-> x e. ( ZZ>= ` K ) ) ) |
| 18 |
15 17
|
syl |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( K ... N ) <-> x e. ( ZZ>= ` K ) ) ) |
| 19 |
|
eluz |
|- ( ( K e. ZZ /\ x e. ZZ ) -> ( x e. ( ZZ>= ` K ) <-> K <_ x ) ) |
| 20 |
3 1 19
|
syl2an |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( ZZ>= ` K ) <-> K <_ x ) ) |
| 21 |
|
zlem1lt |
|- ( ( K e. ZZ /\ x e. ZZ ) -> ( K <_ x <-> ( K - 1 ) < x ) ) |
| 22 |
3 1 21
|
syl2an |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( K <_ x <-> ( K - 1 ) < x ) ) |
| 23 |
18 20 22
|
3bitrd |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( K ... N ) <-> ( K - 1 ) < x ) ) |
| 24 |
13 23
|
orbi12d |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) <-> ( x <_ ( K - 1 ) \/ ( K - 1 ) < x ) ) ) |
| 25 |
8 24
|
mpbird |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) |
| 26 |
|
elfzuz |
|- ( x e. ( M ... ( K - 1 ) ) -> x e. ( ZZ>= ` M ) ) |
| 27 |
26
|
adantl |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( ZZ>= ` M ) ) |
| 28 |
|
elfzuz3 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
| 29 |
28
|
adantr |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> N e. ( ZZ>= ` K ) ) |
| 30 |
|
elfzuz3 |
|- ( x e. ( M ... ( K - 1 ) ) -> ( K - 1 ) e. ( ZZ>= ` x ) ) |
| 31 |
30
|
adantl |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` x ) ) |
| 32 |
|
peano2uz |
|- ( ( K - 1 ) e. ( ZZ>= ` x ) -> ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) ) |
| 33 |
31 32
|
syl |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) ) |
| 34 |
4
|
recnd |
|- ( K e. ( M ... N ) -> K e. CC ) |
| 35 |
5
|
recnd |
|- ( K e. ( M ... N ) -> 1 e. CC ) |
| 36 |
34 35
|
npcand |
|- ( K e. ( M ... N ) -> ( ( K - 1 ) + 1 ) = K ) |
| 37 |
36
|
eleq1d |
|- ( K e. ( M ... N ) -> ( ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) <-> K e. ( ZZ>= ` x ) ) ) |
| 38 |
37
|
adantr |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( K - 1 ) + 1 ) e. ( ZZ>= ` x ) <-> K e. ( ZZ>= ` x ) ) ) |
| 39 |
33 38
|
mpbid |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> K e. ( ZZ>= ` x ) ) |
| 40 |
|
uztrn |
|- ( ( N e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` x ) ) -> N e. ( ZZ>= ` x ) ) |
| 41 |
29 39 40
|
syl2anc |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> N e. ( ZZ>= ` x ) ) |
| 42 |
|
elfzuzb |
|- ( x e. ( M ... N ) <-> ( x e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` x ) ) ) |
| 43 |
27 41 42
|
sylanbrc |
|- ( ( K e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... N ) ) |
| 44 |
|
elfzuz |
|- ( x e. ( K ... N ) -> x e. ( ZZ>= ` K ) ) |
| 45 |
|
elfzuz |
|- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
| 46 |
|
uztrn |
|- ( ( x e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> x e. ( ZZ>= ` M ) ) |
| 47 |
44 45 46
|
syl2anr |
|- ( ( K e. ( M ... N ) /\ x e. ( K ... N ) ) -> x e. ( ZZ>= ` M ) ) |
| 48 |
|
elfzuz3 |
|- ( x e. ( K ... N ) -> N e. ( ZZ>= ` x ) ) |
| 49 |
48
|
adantl |
|- ( ( K e. ( M ... N ) /\ x e. ( K ... N ) ) -> N e. ( ZZ>= ` x ) ) |
| 50 |
47 49 42
|
sylanbrc |
|- ( ( K e. ( M ... N ) /\ x e. ( K ... N ) ) -> x e. ( M ... N ) ) |
| 51 |
43 50
|
jaodan |
|- ( ( K e. ( M ... N ) /\ ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) -> x e. ( M ... N ) ) |
| 52 |
25 51
|
impbida |
|- ( K e. ( M ... N ) -> ( x e. ( M ... N ) <-> ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) ) |
| 53 |
|
elun |
|- ( x e. ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) <-> ( x e. ( M ... ( K - 1 ) ) \/ x e. ( K ... N ) ) ) |
| 54 |
52 53
|
bitr4di |
|- ( K e. ( M ... N ) -> ( x e. ( M ... N ) <-> x e. ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) ) ) |
| 55 |
54
|
eqrdv |
|- ( K e. ( M ... N ) -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) ) |