| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icccmp.1 |  |-  J = ( topGen ` ran (,) ) | 
						
							| 2 |  | icccmp.2 |  |-  T = ( J |`t ( A [,] B ) ) | 
						
							| 3 |  | icccmp.3 |  |-  D = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 4 |  | icccmp.4 |  |-  S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } | 
						
							| 5 |  | icccmp.5 |  |-  ( ph -> A e. RR ) | 
						
							| 6 |  | icccmp.6 |  |-  ( ph -> B e. RR ) | 
						
							| 7 |  | icccmp.7 |  |-  ( ph -> A <_ B ) | 
						
							| 8 |  | icccmp.8 |  |-  ( ph -> U C_ J ) | 
						
							| 9 |  | icccmp.9 |  |-  ( ph -> ( A [,] B ) C_ U. U ) | 
						
							| 10 | 4 | ssrab3 |  |-  S C_ ( A [,] B ) | 
						
							| 11 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 12 | 5 6 11 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 13 | 10 12 | sstrid |  |-  ( ph -> S C_ RR ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | icccmplem1 |  |-  ( ph -> ( A e. S /\ A. y e. S y <_ B ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ph -> A e. S ) | 
						
							| 16 | 15 | ne0d |  |-  ( ph -> S =/= (/) ) | 
						
							| 17 | 14 | simprd |  |-  ( ph -> A. y e. S y <_ B ) | 
						
							| 18 |  | brralrspcev |  |-  ( ( B e. RR /\ A. y e. S y <_ B ) -> E. v e. RR A. y e. S y <_ v ) | 
						
							| 19 | 6 17 18 | syl2anc |  |-  ( ph -> E. v e. RR A. y e. S y <_ v ) | 
						
							| 20 | 13 16 19 | suprcld |  |-  ( ph -> sup ( S , RR , < ) e. RR ) | 
						
							| 21 | 13 16 19 15 | suprubd |  |-  ( ph -> A <_ sup ( S , RR , < ) ) | 
						
							| 22 |  | suprleub |  |-  ( ( ( S C_ RR /\ S =/= (/) /\ E. v e. RR A. y e. S y <_ v ) /\ B e. RR ) -> ( sup ( S , RR , < ) <_ B <-> A. y e. S y <_ B ) ) | 
						
							| 23 | 13 16 19 6 22 | syl31anc |  |-  ( ph -> ( sup ( S , RR , < ) <_ B <-> A. y e. S y <_ B ) ) | 
						
							| 24 | 17 23 | mpbird |  |-  ( ph -> sup ( S , RR , < ) <_ B ) | 
						
							| 25 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( sup ( S , RR , < ) e. ( A [,] B ) <-> ( sup ( S , RR , < ) e. RR /\ A <_ sup ( S , RR , < ) /\ sup ( S , RR , < ) <_ B ) ) ) | 
						
							| 26 | 5 6 25 | syl2anc |  |-  ( ph -> ( sup ( S , RR , < ) e. ( A [,] B ) <-> ( sup ( S , RR , < ) e. RR /\ A <_ sup ( S , RR , < ) /\ sup ( S , RR , < ) <_ B ) ) ) | 
						
							| 27 | 20 21 24 26 | mpbir3and |  |-  ( ph -> sup ( S , RR , < ) e. ( A [,] B ) ) | 
						
							| 28 | 9 27 | sseldd |  |-  ( ph -> sup ( S , RR , < ) e. U. U ) | 
						
							| 29 |  | eluni2 |  |-  ( sup ( S , RR , < ) e. U. U <-> E. u e. U sup ( S , RR , < ) e. u ) | 
						
							| 30 | 28 29 | sylib |  |-  ( ph -> E. u e. U sup ( S , RR , < ) e. u ) | 
						
							| 31 | 8 | sselda |  |-  ( ( ph /\ u e. U ) -> u e. J ) | 
						
							| 32 | 3 | rexmet |  |-  D e. ( *Met ` RR ) | 
						
							| 33 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 34 | 3 33 | tgioo |  |-  ( topGen ` ran (,) ) = ( MetOpen ` D ) | 
						
							| 35 | 1 34 | eqtri |  |-  J = ( MetOpen ` D ) | 
						
							| 36 | 35 | mopni2 |  |-  ( ( D e. ( *Met ` RR ) /\ u e. J /\ sup ( S , RR , < ) e. u ) -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) | 
						
							| 37 | 32 36 | mp3an1 |  |-  ( ( u e. J /\ sup ( S , RR , < ) e. u ) -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) | 
						
							| 38 | 37 | ex |  |-  ( u e. J -> ( sup ( S , RR , < ) e. u -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) | 
						
							| 39 | 31 38 | syl |  |-  ( ( ph /\ u e. U ) -> ( sup ( S , RR , < ) e. u -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) | 
						
							| 40 | 5 | ad2antrr |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> A e. RR ) | 
						
							| 41 | 6 | ad2antrr |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> B e. RR ) | 
						
							| 42 | 7 | ad2antrr |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> A <_ B ) | 
						
							| 43 | 8 | ad2antrr |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> U C_ J ) | 
						
							| 44 | 9 | ad2antrr |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> ( A [,] B ) C_ U. U ) | 
						
							| 45 |  | simplr |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> u e. U ) | 
						
							| 46 |  | simprl |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> w e. RR+ ) | 
						
							| 47 |  | simprr |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) | 
						
							| 48 |  | eqid |  |-  sup ( S , RR , < ) = sup ( S , RR , < ) | 
						
							| 49 |  | eqid |  |-  if ( ( sup ( S , RR , < ) + ( w / 2 ) ) <_ B , ( sup ( S , RR , < ) + ( w / 2 ) ) , B ) = if ( ( sup ( S , RR , < ) + ( w / 2 ) ) <_ B , ( sup ( S , RR , < ) + ( w / 2 ) ) , B ) | 
						
							| 50 | 1 2 3 4 40 41 42 43 44 45 46 47 48 49 | icccmplem2 |  |-  ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> B e. S ) | 
						
							| 51 | 50 | rexlimdvaa |  |-  ( ( ph /\ u e. U ) -> ( E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u -> B e. S ) ) | 
						
							| 52 | 39 51 | syld |  |-  ( ( ph /\ u e. U ) -> ( sup ( S , RR , < ) e. u -> B e. S ) ) | 
						
							| 53 | 52 | rexlimdva |  |-  ( ph -> ( E. u e. U sup ( S , RR , < ) e. u -> B e. S ) ) | 
						
							| 54 | 30 53 | mpd |  |-  ( ph -> B e. S ) |