| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icccmp.1 |  |-  J = ( topGen ` ran (,) ) | 
						
							| 2 |  | icccmp.2 |  |-  T = ( J |`t ( A [,] B ) ) | 
						
							| 3 |  | icccmp.3 |  |-  D = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 4 |  | icccmp.4 |  |-  S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } | 
						
							| 5 |  | icccmp.5 |  |-  ( ph -> A e. RR ) | 
						
							| 6 |  | icccmp.6 |  |-  ( ph -> B e. RR ) | 
						
							| 7 |  | icccmp.7 |  |-  ( ph -> A <_ B ) | 
						
							| 8 |  | icccmp.8 |  |-  ( ph -> U C_ J ) | 
						
							| 9 |  | icccmp.9 |  |-  ( ph -> ( A [,] B ) C_ U. U ) | 
						
							| 10 |  | icccmp.10 |  |-  ( ph -> V e. U ) | 
						
							| 11 |  | icccmp.11 |  |-  ( ph -> C e. RR+ ) | 
						
							| 12 |  | icccmp.12 |  |-  ( ph -> ( G ( ball ` D ) C ) C_ V ) | 
						
							| 13 |  | icccmp.13 |  |-  G = sup ( S , RR , < ) | 
						
							| 14 |  | icccmp.14 |  |-  R = if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) | 
						
							| 15 | 4 | ssrab3 |  |-  S C_ ( A [,] B ) | 
						
							| 16 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 17 | 5 6 16 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 18 | 15 17 | sstrid |  |-  ( ph -> S C_ RR ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 | icccmplem1 |  |-  ( ph -> ( A e. S /\ A. y e. S y <_ B ) ) | 
						
							| 20 | 19 | simpld |  |-  ( ph -> A e. S ) | 
						
							| 21 | 20 | ne0d |  |-  ( ph -> S =/= (/) ) | 
						
							| 22 | 19 | simprd |  |-  ( ph -> A. y e. S y <_ B ) | 
						
							| 23 |  | brralrspcev |  |-  ( ( B e. RR /\ A. y e. S y <_ B ) -> E. n e. RR A. y e. S y <_ n ) | 
						
							| 24 | 6 22 23 | syl2anc |  |-  ( ph -> E. n e. RR A. y e. S y <_ n ) | 
						
							| 25 | 18 21 24 | suprcld |  |-  ( ph -> sup ( S , RR , < ) e. RR ) | 
						
							| 26 | 13 25 | eqeltrid |  |-  ( ph -> G e. RR ) | 
						
							| 27 | 11 | rphalfcld |  |-  ( ph -> ( C / 2 ) e. RR+ ) | 
						
							| 28 | 26 27 | ltaddrpd |  |-  ( ph -> G < ( G + ( C / 2 ) ) ) | 
						
							| 29 | 27 | rpred |  |-  ( ph -> ( C / 2 ) e. RR ) | 
						
							| 30 | 26 29 | readdcld |  |-  ( ph -> ( G + ( C / 2 ) ) e. RR ) | 
						
							| 31 | 26 30 | ltnled |  |-  ( ph -> ( G < ( G + ( C / 2 ) ) <-> -. ( G + ( C / 2 ) ) <_ G ) ) | 
						
							| 32 | 28 31 | mpbid |  |-  ( ph -> -. ( G + ( C / 2 ) ) <_ G ) | 
						
							| 33 | 30 6 | ifcld |  |-  ( ph -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) e. RR ) | 
						
							| 34 | 14 33 | eqeltrid |  |-  ( ph -> R e. RR ) | 
						
							| 35 | 18 21 24 20 | suprubd |  |-  ( ph -> A <_ sup ( S , RR , < ) ) | 
						
							| 36 | 35 13 | breqtrrdi |  |-  ( ph -> A <_ G ) | 
						
							| 37 | 26 30 28 | ltled |  |-  ( ph -> G <_ ( G + ( C / 2 ) ) ) | 
						
							| 38 | 5 26 30 36 37 | letrd |  |-  ( ph -> A <_ ( G + ( C / 2 ) ) ) | 
						
							| 39 |  | breq2 |  |-  ( ( G + ( C / 2 ) ) = if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) -> ( A <_ ( G + ( C / 2 ) ) <-> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) ) | 
						
							| 40 |  | breq2 |  |-  ( B = if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) -> ( A <_ B <-> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) ) | 
						
							| 41 | 39 40 | ifboth |  |-  ( ( A <_ ( G + ( C / 2 ) ) /\ A <_ B ) -> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) | 
						
							| 42 | 38 7 41 | syl2anc |  |-  ( ph -> A <_ if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) ) | 
						
							| 43 | 42 14 | breqtrrdi |  |-  ( ph -> A <_ R ) | 
						
							| 44 |  | min2 |  |-  ( ( ( G + ( C / 2 ) ) e. RR /\ B e. RR ) -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ B ) | 
						
							| 45 | 30 6 44 | syl2anc |  |-  ( ph -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ B ) | 
						
							| 46 | 14 45 | eqbrtrid |  |-  ( ph -> R <_ B ) | 
						
							| 47 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( R e. ( A [,] B ) <-> ( R e. RR /\ A <_ R /\ R <_ B ) ) ) | 
						
							| 48 | 5 6 47 | syl2anc |  |-  ( ph -> ( R e. ( A [,] B ) <-> ( R e. RR /\ A <_ R /\ R <_ B ) ) ) | 
						
							| 49 | 34 43 46 48 | mpbir3and |  |-  ( ph -> R e. ( A [,] B ) ) | 
						
							| 50 | 26 11 | ltsubrpd |  |-  ( ph -> ( G - C ) < G ) | 
						
							| 51 | 50 13 | breqtrdi |  |-  ( ph -> ( G - C ) < sup ( S , RR , < ) ) | 
						
							| 52 | 11 | rpred |  |-  ( ph -> C e. RR ) | 
						
							| 53 | 26 52 | resubcld |  |-  ( ph -> ( G - C ) e. RR ) | 
						
							| 54 |  | suprlub |  |-  ( ( ( S C_ RR /\ S =/= (/) /\ E. n e. RR A. y e. S y <_ n ) /\ ( G - C ) e. RR ) -> ( ( G - C ) < sup ( S , RR , < ) <-> E. v e. S ( G - C ) < v ) ) | 
						
							| 55 | 18 21 24 53 54 | syl31anc |  |-  ( ph -> ( ( G - C ) < sup ( S , RR , < ) <-> E. v e. S ( G - C ) < v ) ) | 
						
							| 56 | 51 55 | mpbid |  |-  ( ph -> E. v e. S ( G - C ) < v ) | 
						
							| 57 |  | oveq2 |  |-  ( x = v -> ( A [,] x ) = ( A [,] v ) ) | 
						
							| 58 | 57 | sseq1d |  |-  ( x = v -> ( ( A [,] x ) C_ U. z <-> ( A [,] v ) C_ U. z ) ) | 
						
							| 59 | 58 | rexbidv |  |-  ( x = v -> ( E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z <-> E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z ) ) | 
						
							| 60 | 59 4 | elrab2 |  |-  ( v e. S <-> ( v e. ( A [,] B ) /\ E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z ) ) | 
						
							| 61 |  | unieq |  |-  ( z = w -> U. z = U. w ) | 
						
							| 62 | 61 | sseq2d |  |-  ( z = w -> ( ( A [,] v ) C_ U. z <-> ( A [,] v ) C_ U. w ) ) | 
						
							| 63 | 62 | cbvrexvw |  |-  ( E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z <-> E. w e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. w ) | 
						
							| 64 |  | simpr1 |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w e. ( ~P U i^i Fin ) ) | 
						
							| 65 |  | elin |  |-  ( w e. ( ~P U i^i Fin ) <-> ( w e. ~P U /\ w e. Fin ) ) | 
						
							| 66 | 64 65 | sylib |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w e. ~P U /\ w e. Fin ) ) | 
						
							| 67 | 66 | simpld |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w e. ~P U ) | 
						
							| 68 | 67 | elpwid |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w C_ U ) | 
						
							| 69 |  | simpll |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ph ) | 
						
							| 70 | 69 10 | syl |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> V e. U ) | 
						
							| 71 | 70 | snssd |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> { V } C_ U ) | 
						
							| 72 | 68 71 | unssd |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) C_ U ) | 
						
							| 73 |  | vex |  |-  w e. _V | 
						
							| 74 |  | snex |  |-  { V } e. _V | 
						
							| 75 | 73 74 | unex |  |-  ( w u. { V } ) e. _V | 
						
							| 76 | 75 | elpw |  |-  ( ( w u. { V } ) e. ~P U <-> ( w u. { V } ) C_ U ) | 
						
							| 77 | 72 76 | sylibr |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) e. ~P U ) | 
						
							| 78 | 66 | simprd |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> w e. Fin ) | 
						
							| 79 |  | snfi |  |-  { V } e. Fin | 
						
							| 80 |  | unfi |  |-  ( ( w e. Fin /\ { V } e. Fin ) -> ( w u. { V } ) e. Fin ) | 
						
							| 81 | 78 79 80 | sylancl |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) e. Fin ) | 
						
							| 82 | 77 81 | elind |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( w u. { V } ) e. ( ~P U i^i Fin ) ) | 
						
							| 83 |  | simplr2 |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> ( A [,] v ) C_ U. w ) | 
						
							| 84 |  | ssun1 |  |-  U. w C_ ( U. w u. V ) | 
						
							| 85 | 83 84 | sstrdi |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> ( A [,] v ) C_ ( U. w u. V ) ) | 
						
							| 86 | 69 5 | syl |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> A e. RR ) | 
						
							| 87 | 69 34 | syl |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> R e. RR ) | 
						
							| 88 |  | elicc2 |  |-  ( ( A e. RR /\ R e. RR ) -> ( t e. ( A [,] R ) <-> ( t e. RR /\ A <_ t /\ t <_ R ) ) ) | 
						
							| 89 | 86 87 88 | syl2anc |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( t e. ( A [,] R ) <-> ( t e. RR /\ A <_ t /\ t <_ R ) ) ) | 
						
							| 90 | 89 | biimpa |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( t e. RR /\ A <_ t /\ t <_ R ) ) | 
						
							| 91 | 90 | simp1d |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> t e. RR ) | 
						
							| 92 | 91 | adantrr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t e. RR ) | 
						
							| 93 | 90 | simp2d |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> A <_ t ) | 
						
							| 94 | 93 | adantrr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> A <_ t ) | 
						
							| 95 |  | simprr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t <_ v ) | 
						
							| 96 | 69 17 | syl |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( A [,] B ) C_ RR ) | 
						
							| 97 |  | simplr |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> v e. ( A [,] B ) ) | 
						
							| 98 | 96 97 | sseldd |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> v e. RR ) | 
						
							| 99 |  | elicc2 |  |-  ( ( A e. RR /\ v e. RR ) -> ( t e. ( A [,] v ) <-> ( t e. RR /\ A <_ t /\ t <_ v ) ) ) | 
						
							| 100 | 86 98 99 | syl2anc |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( t e. ( A [,] v ) <-> ( t e. RR /\ A <_ t /\ t <_ v ) ) ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> ( t e. ( A [,] v ) <-> ( t e. RR /\ A <_ t /\ t <_ v ) ) ) | 
						
							| 102 | 92 94 95 101 | mpbir3and |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t e. ( A [,] v ) ) | 
						
							| 103 | 85 102 | sseldd |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ t <_ v ) ) -> t e. ( U. w u. V ) ) | 
						
							| 104 | 103 | expr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( t <_ v -> t e. ( U. w u. V ) ) ) | 
						
							| 105 | 69 | adantr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ph ) | 
						
							| 106 | 105 12 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G ( ball ` D ) C ) C_ V ) | 
						
							| 107 | 91 | adantrr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. RR ) | 
						
							| 108 | 105 53 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G - C ) e. RR ) | 
						
							| 109 | 98 | adantr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> v e. RR ) | 
						
							| 110 |  | simplr3 |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G - C ) < v ) | 
						
							| 111 |  | simprr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> v < t ) | 
						
							| 112 | 108 109 107 110 111 | lttrd |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G - C ) < t ) | 
						
							| 113 | 105 34 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> R e. RR ) | 
						
							| 114 | 26 52 | readdcld |  |-  ( ph -> ( G + C ) e. RR ) | 
						
							| 115 | 105 114 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G + C ) e. RR ) | 
						
							| 116 | 90 | simp3d |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> t <_ R ) | 
						
							| 117 | 116 | adantrr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t <_ R ) | 
						
							| 118 |  | min1 |  |-  ( ( ( G + ( C / 2 ) ) e. RR /\ B e. RR ) -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ ( G + ( C / 2 ) ) ) | 
						
							| 119 | 30 6 118 | syl2anc |  |-  ( ph -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) <_ ( G + ( C / 2 ) ) ) | 
						
							| 120 | 14 119 | eqbrtrid |  |-  ( ph -> R <_ ( G + ( C / 2 ) ) ) | 
						
							| 121 |  | rphalflt |  |-  ( C e. RR+ -> ( C / 2 ) < C ) | 
						
							| 122 | 11 121 | syl |  |-  ( ph -> ( C / 2 ) < C ) | 
						
							| 123 | 29 52 26 122 | ltadd2dd |  |-  ( ph -> ( G + ( C / 2 ) ) < ( G + C ) ) | 
						
							| 124 | 34 30 114 120 123 | lelttrd |  |-  ( ph -> R < ( G + C ) ) | 
						
							| 125 | 105 124 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> R < ( G + C ) ) | 
						
							| 126 | 107 113 115 117 125 | lelttrd |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t < ( G + C ) ) | 
						
							| 127 |  | rexr |  |-  ( ( G - C ) e. RR -> ( G - C ) e. RR* ) | 
						
							| 128 |  | rexr |  |-  ( ( G + C ) e. RR -> ( G + C ) e. RR* ) | 
						
							| 129 |  | elioo2 |  |-  ( ( ( G - C ) e. RR* /\ ( G + C ) e. RR* ) -> ( t e. ( ( G - C ) (,) ( G + C ) ) <-> ( t e. RR /\ ( G - C ) < t /\ t < ( G + C ) ) ) ) | 
						
							| 130 | 127 128 129 | syl2an |  |-  ( ( ( G - C ) e. RR /\ ( G + C ) e. RR ) -> ( t e. ( ( G - C ) (,) ( G + C ) ) <-> ( t e. RR /\ ( G - C ) < t /\ t < ( G + C ) ) ) ) | 
						
							| 131 | 108 115 130 | syl2anc |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( t e. ( ( G - C ) (,) ( G + C ) ) <-> ( t e. RR /\ ( G - C ) < t /\ t < ( G + C ) ) ) ) | 
						
							| 132 | 107 112 126 131 | mpbir3and |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. ( ( G - C ) (,) ( G + C ) ) ) | 
						
							| 133 | 105 26 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> G e. RR ) | 
						
							| 134 | 105 11 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> C e. RR+ ) | 
						
							| 135 | 134 | rpred |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> C e. RR ) | 
						
							| 136 | 3 | bl2ioo |  |-  ( ( G e. RR /\ C e. RR ) -> ( G ( ball ` D ) C ) = ( ( G - C ) (,) ( G + C ) ) ) | 
						
							| 137 | 133 135 136 | syl2anc |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> ( G ( ball ` D ) C ) = ( ( G - C ) (,) ( G + C ) ) ) | 
						
							| 138 | 132 137 | eleqtrrd |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. ( G ( ball ` D ) C ) ) | 
						
							| 139 | 106 138 | sseldd |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. V ) | 
						
							| 140 |  | elun2 |  |-  ( t e. V -> t e. ( U. w u. V ) ) | 
						
							| 141 | 139 140 | syl |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ ( t e. ( A [,] R ) /\ v < t ) ) -> t e. ( U. w u. V ) ) | 
						
							| 142 | 141 | expr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( v < t -> t e. ( U. w u. V ) ) ) | 
						
							| 143 | 98 | adantr |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> v e. RR ) | 
						
							| 144 |  | lelttric |  |-  ( ( t e. RR /\ v e. RR ) -> ( t <_ v \/ v < t ) ) | 
						
							| 145 | 91 143 144 | syl2anc |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> ( t <_ v \/ v < t ) ) | 
						
							| 146 | 104 142 145 | mpjaod |  |-  ( ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) /\ t e. ( A [,] R ) ) -> t e. ( U. w u. V ) ) | 
						
							| 147 | 146 | ex |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( t e. ( A [,] R ) -> t e. ( U. w u. V ) ) ) | 
						
							| 148 | 147 | ssrdv |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( A [,] R ) C_ ( U. w u. V ) ) | 
						
							| 149 |  | uniun |  |-  U. ( w u. { V } ) = ( U. w u. U. { V } ) | 
						
							| 150 |  | unisng |  |-  ( V e. U -> U. { V } = V ) | 
						
							| 151 | 70 150 | syl |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> U. { V } = V ) | 
						
							| 152 | 151 | uneq2d |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( U. w u. U. { V } ) = ( U. w u. V ) ) | 
						
							| 153 | 149 152 | eqtrid |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> U. ( w u. { V } ) = ( U. w u. V ) ) | 
						
							| 154 | 148 153 | sseqtrrd |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> ( A [,] R ) C_ U. ( w u. { V } ) ) | 
						
							| 155 |  | unieq |  |-  ( y = ( w u. { V } ) -> U. y = U. ( w u. { V } ) ) | 
						
							| 156 | 155 | sseq2d |  |-  ( y = ( w u. { V } ) -> ( ( A [,] R ) C_ U. y <-> ( A [,] R ) C_ U. ( w u. { V } ) ) ) | 
						
							| 157 | 156 | rspcev |  |-  ( ( ( w u. { V } ) e. ( ~P U i^i Fin ) /\ ( A [,] R ) C_ U. ( w u. { V } ) ) -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) | 
						
							| 158 | 82 154 157 | syl2anc |  |-  ( ( ( ph /\ v e. ( A [,] B ) ) /\ ( w e. ( ~P U i^i Fin ) /\ ( A [,] v ) C_ U. w /\ ( G - C ) < v ) ) -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) | 
						
							| 159 | 158 | 3exp2 |  |-  ( ( ph /\ v e. ( A [,] B ) ) -> ( w e. ( ~P U i^i Fin ) -> ( ( A [,] v ) C_ U. w -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) ) | 
						
							| 160 | 159 | rexlimdv |  |-  ( ( ph /\ v e. ( A [,] B ) ) -> ( E. w e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. w -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) | 
						
							| 161 | 63 160 | biimtrid |  |-  ( ( ph /\ v e. ( A [,] B ) ) -> ( E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) | 
						
							| 162 | 161 | expimpd |  |-  ( ph -> ( ( v e. ( A [,] B ) /\ E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z ) -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) | 
						
							| 163 | 60 162 | biimtrid |  |-  ( ph -> ( v e. S -> ( ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) ) | 
						
							| 164 | 163 | rexlimdv |  |-  ( ph -> ( E. v e. S ( G - C ) < v -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) | 
						
							| 165 | 56 164 | mpd |  |-  ( ph -> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) | 
						
							| 166 |  | oveq2 |  |-  ( v = R -> ( A [,] v ) = ( A [,] R ) ) | 
						
							| 167 | 166 | sseq1d |  |-  ( v = R -> ( ( A [,] v ) C_ U. y <-> ( A [,] R ) C_ U. y ) ) | 
						
							| 168 | 167 | rexbidv |  |-  ( v = R -> ( E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y <-> E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) | 
						
							| 169 |  | unieq |  |-  ( z = y -> U. z = U. y ) | 
						
							| 170 | 169 | sseq2d |  |-  ( z = y -> ( ( A [,] v ) C_ U. z <-> ( A [,] v ) C_ U. y ) ) | 
						
							| 171 | 170 | cbvrexvw |  |-  ( E. z e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. z <-> E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y ) | 
						
							| 172 | 59 171 | bitrdi |  |-  ( x = v -> ( E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z <-> E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y ) ) | 
						
							| 173 | 172 | cbvrabv |  |-  { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } = { v e. ( A [,] B ) | E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y } | 
						
							| 174 | 4 173 | eqtri |  |-  S = { v e. ( A [,] B ) | E. y e. ( ~P U i^i Fin ) ( A [,] v ) C_ U. y } | 
						
							| 175 | 168 174 | elrab2 |  |-  ( R e. S <-> ( R e. ( A [,] B ) /\ E. y e. ( ~P U i^i Fin ) ( A [,] R ) C_ U. y ) ) | 
						
							| 176 | 49 165 175 | sylanbrc |  |-  ( ph -> R e. S ) | 
						
							| 177 | 18 21 24 176 | suprubd |  |-  ( ph -> R <_ sup ( S , RR , < ) ) | 
						
							| 178 | 177 13 | breqtrrdi |  |-  ( ph -> R <_ G ) | 
						
							| 179 |  | iftrue |  |-  ( ( G + ( C / 2 ) ) <_ B -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) = ( G + ( C / 2 ) ) ) | 
						
							| 180 | 14 179 | eqtrid |  |-  ( ( G + ( C / 2 ) ) <_ B -> R = ( G + ( C / 2 ) ) ) | 
						
							| 181 | 180 | breq1d |  |-  ( ( G + ( C / 2 ) ) <_ B -> ( R <_ G <-> ( G + ( C / 2 ) ) <_ G ) ) | 
						
							| 182 | 178 181 | syl5ibcom |  |-  ( ph -> ( ( G + ( C / 2 ) ) <_ B -> ( G + ( C / 2 ) ) <_ G ) ) | 
						
							| 183 | 32 182 | mtod |  |-  ( ph -> -. ( G + ( C / 2 ) ) <_ B ) | 
						
							| 184 |  | iffalse |  |-  ( -. ( G + ( C / 2 ) ) <_ B -> if ( ( G + ( C / 2 ) ) <_ B , ( G + ( C / 2 ) ) , B ) = B ) | 
						
							| 185 | 14 184 | eqtrid |  |-  ( -. ( G + ( C / 2 ) ) <_ B -> R = B ) | 
						
							| 186 | 183 185 | syl |  |-  ( ph -> R = B ) | 
						
							| 187 | 186 176 | eqeltrrd |  |-  ( ph -> B e. S ) |