Metamath Proof Explorer


Theorem icccmplem2

Description: Lemma for icccmp . (Contributed by Mario Carneiro, 13-Jun-2014)

Ref Expression
Hypotheses icccmp.1 J=topGenran.
icccmp.2 T=J𝑡AB
icccmp.3 D=abs2
icccmp.4 S=xAB|z𝒫UFinAxz
icccmp.5 φA
icccmp.6 φB
icccmp.7 φAB
icccmp.8 φUJ
icccmp.9 φABU
icccmp.10 φVU
icccmp.11 φC+
icccmp.12 φGballDCV
icccmp.13 G=supS<
icccmp.14 R=ifG+C2BG+C2B
Assertion icccmplem2 φBS

Proof

Step Hyp Ref Expression
1 icccmp.1 J=topGenran.
2 icccmp.2 T=J𝑡AB
3 icccmp.3 D=abs2
4 icccmp.4 S=xAB|z𝒫UFinAxz
5 icccmp.5 φA
6 icccmp.6 φB
7 icccmp.7 φAB
8 icccmp.8 φUJ
9 icccmp.9 φABU
10 icccmp.10 φVU
11 icccmp.11 φC+
12 icccmp.12 φGballDCV
13 icccmp.13 G=supS<
14 icccmp.14 R=ifG+C2BG+C2B
15 4 ssrab3 SAB
16 iccssre ABAB
17 5 6 16 syl2anc φAB
18 15 17 sstrid φS
19 1 2 3 4 5 6 7 8 9 icccmplem1 φASySyB
20 19 simpld φAS
21 20 ne0d φS
22 19 simprd φySyB
23 brralrspcev BySyBnySyn
24 6 22 23 syl2anc φnySyn
25 18 21 24 suprcld φsupS<
26 13 25 eqeltrid φG
27 11 rphalfcld φC2+
28 26 27 ltaddrpd φG<G+C2
29 27 rpred φC2
30 26 29 readdcld φG+C2
31 26 30 ltnled φG<G+C2¬G+C2G
32 28 31 mpbid φ¬G+C2G
33 30 6 ifcld φifG+C2BG+C2B
34 14 33 eqeltrid φR
35 18 21 24 20 suprubd φAsupS<
36 35 13 breqtrrdi φAG
37 26 30 28 ltled φGG+C2
38 5 26 30 36 37 letrd φAG+C2
39 breq2 G+C2=ifG+C2BG+C2BAG+C2AifG+C2BG+C2B
40 breq2 B=ifG+C2BG+C2BABAifG+C2BG+C2B
41 39 40 ifboth AG+C2ABAifG+C2BG+C2B
42 38 7 41 syl2anc φAifG+C2BG+C2B
43 42 14 breqtrrdi φAR
44 min2 G+C2BifG+C2BG+C2BB
45 30 6 44 syl2anc φifG+C2BG+C2BB
46 14 45 eqbrtrid φRB
47 elicc2 ABRABRARRB
48 5 6 47 syl2anc φRABRARRB
49 34 43 46 48 mpbir3and φRAB
50 26 11 ltsubrpd φGC<G
51 50 13 breqtrdi φGC<supS<
52 11 rpred φC
53 26 52 resubcld φGC
54 suprlub SSnySynGCGC<supS<vSGC<v
55 18 21 24 53 54 syl31anc φGC<supS<vSGC<v
56 51 55 mpbid φvSGC<v
57 oveq2 x=vAx=Av
58 57 sseq1d x=vAxzAvz
59 58 rexbidv x=vz𝒫UFinAxzz𝒫UFinAvz
60 59 4 elrab2 vSvABz𝒫UFinAvz
61 unieq z=wz=w
62 61 sseq2d z=wAvzAvw
63 62 cbvrexvw z𝒫UFinAvzw𝒫UFinAvw
64 simpr1 φvABw𝒫UFinAvwGC<vw𝒫UFin
65 elin w𝒫UFinw𝒫UwFin
66 64 65 sylib φvABw𝒫UFinAvwGC<vw𝒫UwFin
67 66 simpld φvABw𝒫UFinAvwGC<vw𝒫U
68 67 elpwid φvABw𝒫UFinAvwGC<vwU
69 simpll φvABw𝒫UFinAvwGC<vφ
70 69 10 syl φvABw𝒫UFinAvwGC<vVU
71 70 snssd φvABw𝒫UFinAvwGC<vVU
72 68 71 unssd φvABw𝒫UFinAvwGC<vwVU
73 vex wV
74 snex VV
75 73 74 unex wVV
76 75 elpw wV𝒫UwVU
77 72 76 sylibr φvABw𝒫UFinAvwGC<vwV𝒫U
78 66 simprd φvABw𝒫UFinAvwGC<vwFin
79 snfi VFin
80 unfi wFinVFinwVFin
81 78 79 80 sylancl φvABw𝒫UFinAvwGC<vwVFin
82 77 81 elind φvABw𝒫UFinAvwGC<vwV𝒫UFin
83 simplr2 φvABw𝒫UFinAvwGC<vtARtvAvw
84 ssun1 wwV
85 83 84 sstrdi φvABw𝒫UFinAvwGC<vtARtvAvwV
86 69 5 syl φvABw𝒫UFinAvwGC<vA
87 69 34 syl φvABw𝒫UFinAvwGC<vR
88 elicc2 ARtARtAttR
89 86 87 88 syl2anc φvABw𝒫UFinAvwGC<vtARtAttR
90 89 biimpa φvABw𝒫UFinAvwGC<vtARtAttR
91 90 simp1d φvABw𝒫UFinAvwGC<vtARt
92 91 adantrr φvABw𝒫UFinAvwGC<vtARtvt
93 90 simp2d φvABw𝒫UFinAvwGC<vtARAt
94 93 adantrr φvABw𝒫UFinAvwGC<vtARtvAt
95 simprr φvABw𝒫UFinAvwGC<vtARtvtv
96 69 17 syl φvABw𝒫UFinAvwGC<vAB
97 simplr φvABw𝒫UFinAvwGC<vvAB
98 96 97 sseldd φvABw𝒫UFinAvwGC<vv
99 elicc2 AvtAvtAttv
100 86 98 99 syl2anc φvABw𝒫UFinAvwGC<vtAvtAttv
101 100 adantr φvABw𝒫UFinAvwGC<vtARtvtAvtAttv
102 92 94 95 101 mpbir3and φvABw𝒫UFinAvwGC<vtARtvtAv
103 85 102 sseldd φvABw𝒫UFinAvwGC<vtARtvtwV
104 103 expr φvABw𝒫UFinAvwGC<vtARtvtwV
105 69 adantr φvABw𝒫UFinAvwGC<vtARv<tφ
106 105 12 syl φvABw𝒫UFinAvwGC<vtARv<tGballDCV
107 91 adantrr φvABw𝒫UFinAvwGC<vtARv<tt
108 105 53 syl φvABw𝒫UFinAvwGC<vtARv<tGC
109 98 adantr φvABw𝒫UFinAvwGC<vtARv<tv
110 simplr3 φvABw𝒫UFinAvwGC<vtARv<tGC<v
111 simprr φvABw𝒫UFinAvwGC<vtARv<tv<t
112 108 109 107 110 111 lttrd φvABw𝒫UFinAvwGC<vtARv<tGC<t
113 105 34 syl φvABw𝒫UFinAvwGC<vtARv<tR
114 26 52 readdcld φG+C
115 105 114 syl φvABw𝒫UFinAvwGC<vtARv<tG+C
116 90 simp3d φvABw𝒫UFinAvwGC<vtARtR
117 116 adantrr φvABw𝒫UFinAvwGC<vtARv<ttR
118 min1 G+C2BifG+C2BG+C2BG+C2
119 30 6 118 syl2anc φifG+C2BG+C2BG+C2
120 14 119 eqbrtrid φRG+C2
121 rphalflt C+C2<C
122 11 121 syl φC2<C
123 29 52 26 122 ltadd2dd φG+C2<G+C
124 34 30 114 120 123 lelttrd φR<G+C
125 105 124 syl φvABw𝒫UFinAvwGC<vtARv<tR<G+C
126 107 113 115 117 125 lelttrd φvABw𝒫UFinAvwGC<vtARv<tt<G+C
127 rexr GCGC*
128 rexr G+CG+C*
129 elioo2 GC*G+C*tGCG+CtGC<tt<G+C
130 127 128 129 syl2an GCG+CtGCG+CtGC<tt<G+C
131 108 115 130 syl2anc φvABw𝒫UFinAvwGC<vtARv<ttGCG+CtGC<tt<G+C
132 107 112 126 131 mpbir3and φvABw𝒫UFinAvwGC<vtARv<ttGCG+C
133 105 26 syl φvABw𝒫UFinAvwGC<vtARv<tG
134 105 11 syl φvABw𝒫UFinAvwGC<vtARv<tC+
135 134 rpred φvABw𝒫UFinAvwGC<vtARv<tC
136 3 bl2ioo GCGballDC=GCG+C
137 133 135 136 syl2anc φvABw𝒫UFinAvwGC<vtARv<tGballDC=GCG+C
138 132 137 eleqtrrd φvABw𝒫UFinAvwGC<vtARv<ttGballDC
139 106 138 sseldd φvABw𝒫UFinAvwGC<vtARv<ttV
140 elun2 tVtwV
141 139 140 syl φvABw𝒫UFinAvwGC<vtARv<ttwV
142 141 expr φvABw𝒫UFinAvwGC<vtARv<ttwV
143 98 adantr φvABw𝒫UFinAvwGC<vtARv
144 lelttric tvtvv<t
145 91 143 144 syl2anc φvABw𝒫UFinAvwGC<vtARtvv<t
146 104 142 145 mpjaod φvABw𝒫UFinAvwGC<vtARtwV
147 146 ex φvABw𝒫UFinAvwGC<vtARtwV
148 147 ssrdv φvABw𝒫UFinAvwGC<vARwV
149 uniun wV=wV
150 unisng VUV=V
151 70 150 syl φvABw𝒫UFinAvwGC<vV=V
152 151 uneq2d φvABw𝒫UFinAvwGC<vwV=wV
153 149 152 eqtrid φvABw𝒫UFinAvwGC<vwV=wV
154 148 153 sseqtrrd φvABw𝒫UFinAvwGC<vARwV
155 unieq y=wVy=wV
156 155 sseq2d y=wVARyARwV
157 156 rspcev wV𝒫UFinARwVy𝒫UFinARy
158 82 154 157 syl2anc φvABw𝒫UFinAvwGC<vy𝒫UFinARy
159 158 3exp2 φvABw𝒫UFinAvwGC<vy𝒫UFinARy
160 159 rexlimdv φvABw𝒫UFinAvwGC<vy𝒫UFinARy
161 63 160 biimtrid φvABz𝒫UFinAvzGC<vy𝒫UFinARy
162 161 expimpd φvABz𝒫UFinAvzGC<vy𝒫UFinARy
163 60 162 biimtrid φvSGC<vy𝒫UFinARy
164 163 rexlimdv φvSGC<vy𝒫UFinARy
165 56 164 mpd φy𝒫UFinARy
166 oveq2 v=RAv=AR
167 166 sseq1d v=RAvyARy
168 167 rexbidv v=Ry𝒫UFinAvyy𝒫UFinARy
169 unieq z=yz=y
170 169 sseq2d z=yAvzAvy
171 170 cbvrexvw z𝒫UFinAvzy𝒫UFinAvy
172 59 171 bitrdi x=vz𝒫UFinAxzy𝒫UFinAvy
173 172 cbvrabv xAB|z𝒫UFinAxz=vAB|y𝒫UFinAvy
174 4 173 eqtri S=vAB|y𝒫UFinAvy
175 168 174 elrab2 RSRABy𝒫UFinARy
176 49 165 175 sylanbrc φRS
177 18 21 24 176 suprubd φRsupS<
178 177 13 breqtrrdi φRG
179 iftrue G+C2BifG+C2BG+C2B=G+C2
180 14 179 eqtrid G+C2BR=G+C2
181 180 breq1d G+C2BRGG+C2G
182 178 181 syl5ibcom φG+C2BG+C2G
183 32 182 mtod φ¬G+C2B
184 iffalse ¬G+C2BifG+C2BG+C2B=B
185 14 184 eqtrid ¬G+C2BR=B
186 183 185 syl φR=B
187 186 176 eqeltrrd φBS