| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodefisum.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iprodefisum.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | iprodefisum.3 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) | 
						
							| 4 |  | iprodefisum.4 |  |-  ( ( ph /\ k e. Z ) -> B e. CC ) | 
						
							| 5 |  | iprodefisum.5 |  |-  ( ph -> seq M ( + , F ) e. dom ~~> ) | 
						
							| 6 | 1 2 3 4 5 | isumcl |  |-  ( ph -> sum_ k e. Z B e. CC ) | 
						
							| 7 |  | efne0 |  |-  ( sum_ k e. Z B e. CC -> ( exp ` sum_ k e. Z B ) =/= 0 ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ( exp ` sum_ k e. Z B ) =/= 0 ) | 
						
							| 9 |  | efcn |  |-  exp e. ( CC -cn-> CC ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> exp e. ( CC -cn-> CC ) ) | 
						
							| 11 |  | fveq2 |  |-  ( j = k -> ( F ` j ) = ( F ` k ) ) | 
						
							| 12 |  | eqid |  |-  ( j e. Z |-> ( F ` j ) ) = ( j e. Z |-> ( F ` j ) ) | 
						
							| 13 |  | fvex |  |-  ( F ` k ) e. _V | 
						
							| 14 | 11 12 13 | fvmpt |  |-  ( k e. Z -> ( ( j e. Z |-> ( F ` j ) ) ` k ) = ( F ` k ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> ( F ` j ) ) ` k ) = ( F ` k ) ) | 
						
							| 16 | 3 4 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 17 | 15 16 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> ( F ` j ) ) ` k ) e. CC ) | 
						
							| 18 | 1 2 17 | serf |  |-  ( ph -> seq M ( + , ( j e. Z |-> ( F ` j ) ) ) : Z --> CC ) | 
						
							| 19 | 1 | eqcomi |  |-  ( ZZ>= ` M ) = Z | 
						
							| 20 | 14 19 | eleq2s |  |-  ( k e. ( ZZ>= ` M ) -> ( ( j e. Z |-> ( F ` j ) ) ` k ) = ( F ` k ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( j e. Z |-> ( F ` j ) ) ` k ) = ( F ` k ) ) | 
						
							| 22 | 2 21 | seqfeq |  |-  ( ph -> seq M ( + , ( j e. Z |-> ( F ` j ) ) ) = seq M ( + , F ) ) | 
						
							| 23 |  | climdm |  |-  ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) | 
						
							| 24 | 5 23 | sylib |  |-  ( ph -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) | 
						
							| 25 | 22 24 | eqbrtrd |  |-  ( ph -> seq M ( + , ( j e. Z |-> ( F ` j ) ) ) ~~> ( ~~> ` seq M ( + , F ) ) ) | 
						
							| 26 |  | climcl |  |-  ( seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) -> ( ~~> ` seq M ( + , F ) ) e. CC ) | 
						
							| 27 | 24 26 | syl |  |-  ( ph -> ( ~~> ` seq M ( + , F ) ) e. CC ) | 
						
							| 28 | 1 2 10 18 25 27 | climcncf |  |-  ( ph -> ( exp o. seq M ( + , ( j e. Z |-> ( F ` j ) ) ) ) ~~> ( exp ` ( ~~> ` seq M ( + , F ) ) ) ) | 
						
							| 29 | 11 | cbvmptv |  |-  ( j e. Z |-> ( F ` j ) ) = ( k e. Z |-> ( F ` k ) ) | 
						
							| 30 | 16 29 | fmptd |  |-  ( ph -> ( j e. Z |-> ( F ` j ) ) : Z --> CC ) | 
						
							| 31 | 1 2 30 | iprodefisumlem |  |-  ( ph -> seq M ( x. , ( exp o. ( j e. Z |-> ( F ` j ) ) ) ) = ( exp o. seq M ( + , ( j e. Z |-> ( F ` j ) ) ) ) ) | 
						
							| 32 | 1 2 3 4 | isum |  |-  ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , F ) ) ) | 
						
							| 33 | 32 | fveq2d |  |-  ( ph -> ( exp ` sum_ k e. Z B ) = ( exp ` ( ~~> ` seq M ( + , F ) ) ) ) | 
						
							| 34 | 28 31 33 | 3brtr4d |  |-  ( ph -> seq M ( x. , ( exp o. ( j e. Z |-> ( F ` j ) ) ) ) ~~> ( exp ` sum_ k e. Z B ) ) | 
						
							| 35 |  | fvco3 |  |-  ( ( ( j e. Z |-> ( F ` j ) ) : Z --> CC /\ k e. Z ) -> ( ( exp o. ( j e. Z |-> ( F ` j ) ) ) ` k ) = ( exp ` ( ( j e. Z |-> ( F ` j ) ) ` k ) ) ) | 
						
							| 36 | 30 35 | sylan |  |-  ( ( ph /\ k e. Z ) -> ( ( exp o. ( j e. Z |-> ( F ` j ) ) ) ` k ) = ( exp ` ( ( j e. Z |-> ( F ` j ) ) ` k ) ) ) | 
						
							| 37 | 15 | fveq2d |  |-  ( ( ph /\ k e. Z ) -> ( exp ` ( ( j e. Z |-> ( F ` j ) ) ` k ) ) = ( exp ` ( F ` k ) ) ) | 
						
							| 38 | 3 | fveq2d |  |-  ( ( ph /\ k e. Z ) -> ( exp ` ( F ` k ) ) = ( exp ` B ) ) | 
						
							| 39 | 36 37 38 | 3eqtrd |  |-  ( ( ph /\ k e. Z ) -> ( ( exp o. ( j e. Z |-> ( F ` j ) ) ) ` k ) = ( exp ` B ) ) | 
						
							| 40 |  | efcl |  |-  ( B e. CC -> ( exp ` B ) e. CC ) | 
						
							| 41 | 4 40 | syl |  |-  ( ( ph /\ k e. Z ) -> ( exp ` B ) e. CC ) | 
						
							| 42 | 1 2 8 34 39 41 | iprodn0 |  |-  ( ph -> prod_ k e. Z ( exp ` B ) = ( exp ` sum_ k e. Z B ) ) |