Step |
Hyp |
Ref |
Expression |
1 |
|
iprodefisumlem.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iprodefisumlem.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iprodefisumlem.3 |
|- ( ph -> F : Z --> CC ) |
4 |
|
fvco3 |
|- ( ( F : Z --> CC /\ k e. Z ) -> ( ( exp o. F ) ` k ) = ( exp ` ( F ` k ) ) ) |
5 |
3 4
|
sylan |
|- ( ( ph /\ k e. Z ) -> ( ( exp o. F ) ` k ) = ( exp ` ( F ` k ) ) ) |
6 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
7 |
|
efcl |
|- ( ( F ` k ) e. CC -> ( exp ` ( F ` k ) ) e. CC ) |
8 |
6 7
|
syl |
|- ( ( ph /\ k e. Z ) -> ( exp ` ( F ` k ) ) e. CC ) |
9 |
5 8
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( exp o. F ) ` k ) e. CC ) |
10 |
1 2 9
|
prodf |
|- ( ph -> seq M ( x. , ( exp o. F ) ) : Z --> CC ) |
11 |
10
|
ffnd |
|- ( ph -> seq M ( x. , ( exp o. F ) ) Fn Z ) |
12 |
|
eff |
|- exp : CC --> CC |
13 |
|
ffn |
|- ( exp : CC --> CC -> exp Fn CC ) |
14 |
12 13
|
ax-mp |
|- exp Fn CC |
15 |
1 2 6
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
16 |
|
fnfco |
|- ( ( exp Fn CC /\ seq M ( + , F ) : Z --> CC ) -> ( exp o. seq M ( + , F ) ) Fn Z ) |
17 |
14 15 16
|
sylancr |
|- ( ph -> ( exp o. seq M ( + , F ) ) Fn Z ) |
18 |
|
fveq2 |
|- ( j = M -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` M ) ) |
19 |
|
2fveq3 |
|- ( j = M -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) |
20 |
18 19
|
eqeq12d |
|- ( j = M -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) ) |
21 |
20
|
imbi2d |
|- ( j = M -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) ) ) |
22 |
|
fveq2 |
|- ( j = n -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` n ) ) |
23 |
|
2fveq3 |
|- ( j = n -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) |
24 |
22 23
|
eqeq12d |
|- ( j = n -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) ) |
25 |
24
|
imbi2d |
|- ( j = n -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) ) ) |
26 |
|
fveq2 |
|- ( j = ( n + 1 ) -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) ) |
27 |
|
2fveq3 |
|- ( j = ( n + 1 ) -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) |
28 |
26 27
|
eqeq12d |
|- ( j = ( n + 1 ) -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) |
29 |
28
|
imbi2d |
|- ( j = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) ) |
30 |
|
fveq2 |
|- ( j = k -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` k ) ) |
31 |
|
2fveq3 |
|- ( j = k -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
32 |
30 31
|
eqeq12d |
|- ( j = k -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) |
33 |
32
|
imbi2d |
|- ( j = k -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) ) |
34 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
35 |
2 34
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
36 |
35 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
37 |
|
fvco3 |
|- ( ( F : Z --> CC /\ M e. Z ) -> ( ( exp o. F ) ` M ) = ( exp ` ( F ` M ) ) ) |
38 |
3 36 37
|
syl2anc |
|- ( ph -> ( ( exp o. F ) ` M ) = ( exp ` ( F ` M ) ) ) |
39 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( ( exp o. F ) ` M ) ) |
40 |
2 39
|
syl |
|- ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( ( exp o. F ) ` M ) ) |
41 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( + , F ) ` M ) = ( F ` M ) ) |
42 |
2 41
|
syl |
|- ( ph -> ( seq M ( + , F ) ` M ) = ( F ` M ) ) |
43 |
42
|
fveq2d |
|- ( ph -> ( exp ` ( seq M ( + , F ) ` M ) ) = ( exp ` ( F ` M ) ) ) |
44 |
38 40 43
|
3eqtr4d |
|- ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) |
45 |
44
|
a1i |
|- ( M e. ZZ -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) ) |
46 |
|
oveq1 |
|- ( ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
47 |
46
|
3ad2ant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
48 |
3
|
adantl |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> F : Z --> CC ) |
49 |
|
peano2uz |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
50 |
49 1
|
eleqtrrdi |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
51 |
50
|
adantr |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( n + 1 ) e. Z ) |
52 |
|
fvco3 |
|- ( ( F : Z --> CC /\ ( n + 1 ) e. Z ) -> ( ( exp o. F ) ` ( n + 1 ) ) = ( exp ` ( F ` ( n + 1 ) ) ) ) |
53 |
48 51 52
|
syl2anc |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( ( exp o. F ) ` ( n + 1 ) ) = ( exp ` ( F ` ( n + 1 ) ) ) ) |
54 |
53
|
oveq2d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( exp ` ( F ` ( n + 1 ) ) ) ) ) |
55 |
15
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. CC ) |
56 |
55
|
expcom |
|- ( n e. Z -> ( ph -> ( seq M ( + , F ) ` n ) e. CC ) ) |
57 |
1
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
58 |
56 57
|
eleq2s |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( + , F ) ` n ) e. CC ) ) |
59 |
58
|
imp |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( seq M ( + , F ) ` n ) e. CC ) |
60 |
48 51
|
ffvelrnd |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( F ` ( n + 1 ) ) e. CC ) |
61 |
|
efadd |
|- ( ( ( seq M ( + , F ) ` n ) e. CC /\ ( F ` ( n + 1 ) ) e. CC ) -> ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( exp ` ( F ` ( n + 1 ) ) ) ) ) |
62 |
59 60 61
|
syl2anc |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( exp ` ( F ` ( n + 1 ) ) ) ) ) |
63 |
54 62
|
eqtr4d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
64 |
63
|
3adant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
65 |
47 64
|
eqtrd |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
66 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
67 |
66
|
adantr |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
68 |
67
|
3adant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
69 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( n + 1 ) ) = ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) |
70 |
69
|
adantr |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( seq M ( + , F ) ` ( n + 1 ) ) = ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) |
71 |
70
|
fveq2d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
72 |
71
|
3adant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
73 |
65 68 72
|
3eqtr4d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) |
74 |
73
|
3exp |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) ) |
75 |
74
|
a2d |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) ) |
76 |
21 25 29 33 45 75
|
uzind4 |
|- ( k e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) |
77 |
76 1
|
eleq2s |
|- ( k e. Z -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) |
78 |
77
|
impcom |
|- ( ( ph /\ k e. Z ) -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
79 |
|
fvco3 |
|- ( ( seq M ( + , F ) : Z --> CC /\ k e. Z ) -> ( ( exp o. seq M ( + , F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
80 |
15 79
|
sylan |
|- ( ( ph /\ k e. Z ) -> ( ( exp o. seq M ( + , F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
81 |
78 80
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( ( exp o. seq M ( + , F ) ) ` k ) ) |
82 |
11 17 81
|
eqfnfvd |
|- ( ph -> seq M ( x. , ( exp o. F ) ) = ( exp o. seq M ( + , F ) ) ) |