| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iprodefisumlem.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
iprodefisumlem.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
iprodefisumlem.3 |
|- ( ph -> F : Z --> CC ) |
| 4 |
|
fvco3 |
|- ( ( F : Z --> CC /\ k e. Z ) -> ( ( exp o. F ) ` k ) = ( exp ` ( F ` k ) ) ) |
| 5 |
3 4
|
sylan |
|- ( ( ph /\ k e. Z ) -> ( ( exp o. F ) ` k ) = ( exp ` ( F ` k ) ) ) |
| 6 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 7 |
|
efcl |
|- ( ( F ` k ) e. CC -> ( exp ` ( F ` k ) ) e. CC ) |
| 8 |
6 7
|
syl |
|- ( ( ph /\ k e. Z ) -> ( exp ` ( F ` k ) ) e. CC ) |
| 9 |
5 8
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( exp o. F ) ` k ) e. CC ) |
| 10 |
1 2 9
|
prodf |
|- ( ph -> seq M ( x. , ( exp o. F ) ) : Z --> CC ) |
| 11 |
10
|
ffnd |
|- ( ph -> seq M ( x. , ( exp o. F ) ) Fn Z ) |
| 12 |
|
eff |
|- exp : CC --> CC |
| 13 |
|
ffn |
|- ( exp : CC --> CC -> exp Fn CC ) |
| 14 |
12 13
|
ax-mp |
|- exp Fn CC |
| 15 |
1 2 6
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 16 |
|
fnfco |
|- ( ( exp Fn CC /\ seq M ( + , F ) : Z --> CC ) -> ( exp o. seq M ( + , F ) ) Fn Z ) |
| 17 |
14 15 16
|
sylancr |
|- ( ph -> ( exp o. seq M ( + , F ) ) Fn Z ) |
| 18 |
|
fveq2 |
|- ( j = M -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` M ) ) |
| 19 |
|
2fveq3 |
|- ( j = M -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) |
| 20 |
18 19
|
eqeq12d |
|- ( j = M -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) ) |
| 21 |
20
|
imbi2d |
|- ( j = M -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) ) ) |
| 22 |
|
fveq2 |
|- ( j = n -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` n ) ) |
| 23 |
|
2fveq3 |
|- ( j = n -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) |
| 24 |
22 23
|
eqeq12d |
|- ( j = n -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) ) |
| 25 |
24
|
imbi2d |
|- ( j = n -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) ) ) |
| 26 |
|
fveq2 |
|- ( j = ( n + 1 ) -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) ) |
| 27 |
|
2fveq3 |
|- ( j = ( n + 1 ) -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) |
| 28 |
26 27
|
eqeq12d |
|- ( j = ( n + 1 ) -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) |
| 29 |
28
|
imbi2d |
|- ( j = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) ) |
| 30 |
|
fveq2 |
|- ( j = k -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( seq M ( x. , ( exp o. F ) ) ` k ) ) |
| 31 |
|
2fveq3 |
|- ( j = k -> ( exp ` ( seq M ( + , F ) ` j ) ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
| 32 |
30 31
|
eqeq12d |
|- ( j = k -> ( ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) <-> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) |
| 33 |
32
|
imbi2d |
|- ( j = k -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` j ) = ( exp ` ( seq M ( + , F ) ` j ) ) ) <-> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) ) |
| 34 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 35 |
2 34
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 36 |
35 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
| 37 |
|
fvco3 |
|- ( ( F : Z --> CC /\ M e. Z ) -> ( ( exp o. F ) ` M ) = ( exp ` ( F ` M ) ) ) |
| 38 |
3 36 37
|
syl2anc |
|- ( ph -> ( ( exp o. F ) ` M ) = ( exp ` ( F ` M ) ) ) |
| 39 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( ( exp o. F ) ` M ) ) |
| 40 |
2 39
|
syl |
|- ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( ( exp o. F ) ` M ) ) |
| 41 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( + , F ) ` M ) = ( F ` M ) ) |
| 42 |
2 41
|
syl |
|- ( ph -> ( seq M ( + , F ) ` M ) = ( F ` M ) ) |
| 43 |
42
|
fveq2d |
|- ( ph -> ( exp ` ( seq M ( + , F ) ` M ) ) = ( exp ` ( F ` M ) ) ) |
| 44 |
38 40 43
|
3eqtr4d |
|- ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) |
| 45 |
44
|
a1i |
|- ( M e. ZZ -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` M ) = ( exp ` ( seq M ( + , F ) ` M ) ) ) ) |
| 46 |
|
oveq1 |
|- ( ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
| 47 |
46
|
3ad2ant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
| 48 |
3
|
adantl |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> F : Z --> CC ) |
| 49 |
|
peano2uz |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
| 50 |
49 1
|
eleqtrrdi |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
| 51 |
50
|
adantr |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( n + 1 ) e. Z ) |
| 52 |
|
fvco3 |
|- ( ( F : Z --> CC /\ ( n + 1 ) e. Z ) -> ( ( exp o. F ) ` ( n + 1 ) ) = ( exp ` ( F ` ( n + 1 ) ) ) ) |
| 53 |
48 51 52
|
syl2anc |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( ( exp o. F ) ` ( n + 1 ) ) = ( exp ` ( F ` ( n + 1 ) ) ) ) |
| 54 |
53
|
oveq2d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( exp ` ( F ` ( n + 1 ) ) ) ) ) |
| 55 |
15
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. CC ) |
| 56 |
55
|
expcom |
|- ( n e. Z -> ( ph -> ( seq M ( + , F ) ` n ) e. CC ) ) |
| 57 |
1
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
| 58 |
56 57
|
eleq2s |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( + , F ) ` n ) e. CC ) ) |
| 59 |
58
|
imp |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( seq M ( + , F ) ` n ) e. CC ) |
| 60 |
48 51
|
ffvelcdmd |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 61 |
|
efadd |
|- ( ( ( seq M ( + , F ) ` n ) e. CC /\ ( F ` ( n + 1 ) ) e. CC ) -> ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( exp ` ( F ` ( n + 1 ) ) ) ) ) |
| 62 |
59 60 61
|
syl2anc |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) = ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( exp ` ( F ` ( n + 1 ) ) ) ) ) |
| 63 |
54 62
|
eqtr4d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
| 64 |
63
|
3adant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ( exp ` ( seq M ( + , F ) ` n ) ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
| 65 |
47 64
|
eqtrd |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
| 66 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
| 67 |
66
|
adantr |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
| 68 |
67
|
3adant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( ( seq M ( x. , ( exp o. F ) ) ` n ) x. ( ( exp o. F ) ` ( n + 1 ) ) ) ) |
| 69 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( n + 1 ) ) = ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) |
| 70 |
69
|
adantr |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( seq M ( + , F ) ` ( n + 1 ) ) = ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) |
| 71 |
70
|
fveq2d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph ) -> ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
| 72 |
71
|
3adant3 |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) = ( exp ` ( ( seq M ( + , F ) ` n ) + ( F ` ( n + 1 ) ) ) ) ) |
| 73 |
65 68 72
|
3eqtr4d |
|- ( ( n e. ( ZZ>= ` M ) /\ ph /\ ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) |
| 74 |
73
|
3exp |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) ) |
| 75 |
74
|
a2d |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( seq M ( x. , ( exp o. F ) ) ` n ) = ( exp ` ( seq M ( + , F ) ` n ) ) ) -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` ( n + 1 ) ) = ( exp ` ( seq M ( + , F ) ` ( n + 1 ) ) ) ) ) ) |
| 76 |
21 25 29 33 45 75
|
uzind4 |
|- ( k e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) |
| 77 |
76 1
|
eleq2s |
|- ( k e. Z -> ( ph -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) ) |
| 78 |
77
|
impcom |
|- ( ( ph /\ k e. Z ) -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
| 79 |
|
fvco3 |
|- ( ( seq M ( + , F ) : Z --> CC /\ k e. Z ) -> ( ( exp o. seq M ( + , F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
| 80 |
15 79
|
sylan |
|- ( ( ph /\ k e. Z ) -> ( ( exp o. seq M ( + , F ) ) ` k ) = ( exp ` ( seq M ( + , F ) ` k ) ) ) |
| 81 |
78 80
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( seq M ( x. , ( exp o. F ) ) ` k ) = ( ( exp o. seq M ( + , F ) ) ` k ) ) |
| 82 |
11 17 81
|
eqfnfvd |
|- ( ph -> seq M ( x. , ( exp o. F ) ) = ( exp o. seq M ( + , F ) ) ) |