| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodefisumlem.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iprodefisumlem.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | iprodefisumlem.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 4 |  | fvco3 | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  𝐹 ) ‘ 𝑘 )  =  ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  𝐹 ) ‘ 𝑘 )  =  ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 7 |  | efcl | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( exp ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( exp ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 9 | 5 8 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  𝐹 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 10 | 1 2 9 | prodf | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 11 | 10 | ffnd | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) )  Fn  𝑍 ) | 
						
							| 12 |  | eff | ⊢ exp : ℂ ⟶ ℂ | 
						
							| 13 |  | ffn | ⊢ ( exp : ℂ ⟶ ℂ  →  exp  Fn  ℂ ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ exp  Fn  ℂ | 
						
							| 15 | 1 2 6 | serf | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℂ ) | 
						
							| 16 |  | fnfco | ⊢ ( ( exp  Fn  ℂ  ∧  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℂ )  →  ( exp  ∘  seq 𝑀 (  +  ,  𝐹 ) )  Fn  𝑍 ) | 
						
							| 17 | 14 15 16 | sylancr | ⊢ ( 𝜑  →  ( exp  ∘  seq 𝑀 (  +  ,  𝐹 ) )  Fn  𝑍 ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑗  =  𝑀  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑀 ) ) | 
						
							| 19 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑀  →  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) ) ) | 
						
							| 20 | 18 19 | eqeq12d | ⊢ ( 𝑗  =  𝑀  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  ↔  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑀 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) ) ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑗  =  𝑀  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑀 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) ) ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑗  =  𝑛  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 ) ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑛  →  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 24 | 22 23 | eqeq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  ↔  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑗  =  𝑛  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑛  +  1 )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 27 |  | 2fveq3 | ⊢ ( 𝑗  =  ( 𝑛  +  1 )  →  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 28 | 26 27 | eqeq12d | ⊢ ( 𝑗  =  ( 𝑛  +  1 )  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  ↔  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 29 | 28 | imbi2d | ⊢ ( 𝑗  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑘 ) ) | 
						
							| 31 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑘  →  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) | 
						
							| 32 | 30 31 | eqeq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  ↔  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑘 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) ) | 
						
							| 33 | 32 | imbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑘 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 34 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 35 | 2 34 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 36 | 35 1 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 37 |  | fvco3 | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ  ∧  𝑀  ∈  𝑍 )  →  ( ( exp  ∘  𝐹 ) ‘ 𝑀 )  =  ( exp ‘ ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 38 | 3 36 37 | syl2anc | ⊢ ( 𝜑  →  ( ( exp  ∘  𝐹 ) ‘ 𝑀 )  =  ( exp ‘ ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 39 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑀 )  =  ( ( exp  ∘  𝐹 ) ‘ 𝑀 ) ) | 
						
							| 40 | 2 39 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑀 )  =  ( ( exp  ∘  𝐹 ) ‘ 𝑀 ) ) | 
						
							| 41 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 42 | 2 41 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( 𝜑  →  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) )  =  ( exp ‘ ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 44 | 38 40 43 | 3eqtr4d | ⊢ ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑀 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) ) ) | 
						
							| 45 | 44 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑀 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) ) ) ) | 
						
							| 46 |  | oveq1 | ⊢ ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 47 | 46 | 3ad2ant3 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑  ∧  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 48 | 3 | adantl | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 49 |  | peano2uz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 50 | 49 1 | eleqtrrdi | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑛  +  1 )  ∈  𝑍 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( 𝑛  +  1 )  ∈  𝑍 ) | 
						
							| 52 |  | fvco3 | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ  ∧  ( 𝑛  +  1 )  ∈  𝑍 )  →  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( exp ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 53 | 48 51 52 | syl2anc | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( exp ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( exp ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 55 | 15 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 56 | 55 | expcom | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ ) ) | 
						
							| 57 | 1 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑀 )  =  𝑍 | 
						
							| 58 | 56 57 | eleq2s | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 60 | 48 51 | ffvelcdmd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ ) | 
						
							| 61 |  | efadd | ⊢ ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ )  →  ( exp ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( exp ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 62 | 59 60 61 | syl2anc | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( exp ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( exp ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 63 | 54 62 | eqtr4d | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( exp ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 64 | 63 | 3adant3 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑  ∧  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( exp ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 65 | 47 64 | eqtrd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑  ∧  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( exp ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 66 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 68 | 67 | 3adant3 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑  ∧  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  ·  ( ( exp  ∘  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 69 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑 )  →  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( exp ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 72 | 71 | 3adant3 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑  ∧  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( exp ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 73 | 65 68 72 | 3eqtr4d | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝜑  ∧  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 74 | 73 | 3exp | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 75 | 74 | a2d | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑛 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ ( 𝑛  +  1 ) )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 76 | 21 25 29 33 45 75 | uzind4 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑘 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) ) | 
						
							| 77 | 76 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑘 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) ) | 
						
							| 78 | 77 | impcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑘 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) | 
						
							| 79 |  | fvco3 | ⊢ ( ( seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℂ  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  seq 𝑀 (  +  ,  𝐹 ) ) ‘ 𝑘 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) | 
						
							| 80 | 15 79 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  seq 𝑀 (  +  ,  𝐹 ) ) ‘ 𝑘 )  =  ( exp ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑘 ) ) ) | 
						
							| 81 | 78 80 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) ) ‘ 𝑘 )  =  ( ( exp  ∘  seq 𝑀 (  +  ,  𝐹 ) ) ‘ 𝑘 ) ) | 
						
							| 82 | 11 17 81 | eqfnfvd | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  ( exp  ∘  𝐹 ) )  =  ( exp  ∘  seq 𝑀 (  +  ,  𝐹 ) ) ) |