| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iprodefisumlem.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
iprodefisumlem.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
iprodefisumlem.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
| 4 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ 𝐹 ) ‘ 𝑘 ) = ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ 𝐹 ) ‘ 𝑘 ) = ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 6 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 7 |
|
efcl |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 9 |
5 8
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 10 |
1 2 9
|
prodf |
⊢ ( 𝜑 → seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) : 𝑍 ⟶ ℂ ) |
| 11 |
10
|
ffnd |
⊢ ( 𝜑 → seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) Fn 𝑍 ) |
| 12 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 13 |
|
ffn |
⊢ ( exp : ℂ ⟶ ℂ → exp Fn ℂ ) |
| 14 |
12 13
|
ax-mp |
⊢ exp Fn ℂ |
| 15 |
1 2 6
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 16 |
|
fnfco |
⊢ ( ( exp Fn ℂ ∧ seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) → ( exp ∘ seq 𝑀 ( + , 𝐹 ) ) Fn 𝑍 ) |
| 17 |
14 15 16
|
sylancr |
⊢ ( 𝜑 → ( exp ∘ seq 𝑀 ( + , 𝐹 ) ) Fn 𝑍 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑗 = 𝑀 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑀 ) ) |
| 19 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑀 → ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) ) |
| 20 |
18 19
|
eqeq12d |
⊢ ( 𝑗 = 𝑀 → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ↔ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑀 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑀 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑗 = 𝑛 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) ) |
| 23 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑛 → ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 24 |
22 23
|
eqeq12d |
⊢ ( 𝑗 = 𝑛 → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ↔ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑛 + 1 ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 27 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝑛 + 1 ) → ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 28 |
26 27
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ↔ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑗 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑘 ) ) |
| 31 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑘 → ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 32 |
30 31
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ↔ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑘 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) |
| 33 |
32
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑗 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑘 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ) |
| 34 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 35 |
2 34
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 |
35 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 37 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑀 ∈ 𝑍 ) → ( ( exp ∘ 𝐹 ) ‘ 𝑀 ) = ( exp ‘ ( 𝐹 ‘ 𝑀 ) ) ) |
| 38 |
3 36 37
|
syl2anc |
⊢ ( 𝜑 → ( ( exp ∘ 𝐹 ) ‘ 𝑀 ) = ( exp ‘ ( 𝐹 ‘ 𝑀 ) ) ) |
| 39 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑀 ) = ( ( exp ∘ 𝐹 ) ‘ 𝑀 ) ) |
| 40 |
2 39
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑀 ) = ( ( exp ∘ 𝐹 ) ‘ 𝑀 ) ) |
| 41 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 42 |
2 41
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 43 |
42
|
fveq2d |
⊢ ( 𝜑 → ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( exp ‘ ( 𝐹 ‘ 𝑀 ) ) ) |
| 44 |
38 40 43
|
3eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑀 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) ) |
| 45 |
44
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑀 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 46 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 47 |
46
|
3ad2ant3 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 48 |
3
|
adantl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → 𝐹 : 𝑍 ⟶ ℂ ) |
| 49 |
|
peano2uz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 50 |
49 1
|
eleqtrrdi |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 52 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 53 |
48 51 52
|
syl2anc |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 |
53
|
oveq2d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( exp ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 55 |
15
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 56 |
55
|
expcom |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) ) |
| 57 |
1
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
| 58 |
56 57
|
eleq2s |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) ) |
| 59 |
58
|
imp |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 60 |
48 51
|
ffvelcdmd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 61 |
|
efadd |
⊢ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) → ( exp ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( exp ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 62 |
59 60 61
|
syl2anc |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( exp ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( exp ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 63 |
54 62
|
eqtr4d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 64 |
63
|
3adant3 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 65 |
47 64
|
eqtrd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 66 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 68 |
67
|
3adant3 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) · ( ( exp ∘ 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 69 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 71 |
70
|
fveq2d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) → ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 72 |
71
|
3adant3 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 73 |
65 68 72
|
3eqtr4d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 74 |
73
|
3exp |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 75 |
74
|
a2d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑛 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 76 |
21 25 29 33 45 75
|
uzind4 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑘 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) |
| 77 |
76 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝜑 → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑘 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) |
| 78 |
77
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑘 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 79 |
|
fvco3 |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ seq 𝑀 ( + , 𝐹 ) ) ‘ 𝑘 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 80 |
15 79
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ seq 𝑀 ( + , 𝐹 ) ) ‘ 𝑘 ) = ( exp ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 81 |
78 80
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) ‘ 𝑘 ) = ( ( exp ∘ seq 𝑀 ( + , 𝐹 ) ) ‘ 𝑘 ) ) |
| 82 |
11 17 81
|
eqfnfvd |
⊢ ( 𝜑 → seq 𝑀 ( · , ( exp ∘ 𝐹 ) ) = ( exp ∘ seq 𝑀 ( + , 𝐹 ) ) ) |