Step |
Hyp |
Ref |
Expression |
1 |
|
iprodefisum.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iprodefisum.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iprodefisum.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
4 |
|
iprodefisum.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
5 |
|
iprodefisum.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
6 |
1 2 3 4 5
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐵 ∈ ℂ ) |
7 |
|
efne0 |
⊢ ( Σ 𝑘 ∈ 𝑍 𝐵 ∈ ℂ → ( exp ‘ Σ 𝑘 ∈ 𝑍 𝐵 ) ≠ 0 ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( exp ‘ Σ 𝑘 ∈ 𝑍 𝐵 ) ≠ 0 ) |
9 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → exp ∈ ( ℂ –cn→ ℂ ) ) |
11 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
12 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) |
13 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
14 |
11 12 13
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
16 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
17 |
15 16
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℂ ) |
18 |
1 2 17
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) : 𝑍 ⟶ ℂ ) |
19 |
1
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
20 |
14 19
|
eleq2s |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
22 |
2 21
|
seqfeq |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) = seq 𝑀 ( + , 𝐹 ) ) |
23 |
|
climdm |
⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
24 |
5 23
|
sylib |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
25 |
22 24
|
eqbrtrd |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
26 |
|
climcl |
⊢ ( seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ ) |
27 |
24 26
|
syl |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ ) |
28 |
1 2 10 18 25 27
|
climcncf |
⊢ ( 𝜑 → ( exp ∘ seq 𝑀 ( + , ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ) ⇝ ( exp ‘ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) ) |
29 |
11
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) |
30 |
16 29
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℂ ) |
31 |
1 2 30
|
iprodefisumlem |
⊢ ( 𝜑 → seq 𝑀 ( · , ( exp ∘ ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ) = ( exp ∘ seq 𝑀 ( + , ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
32 |
1 2 3 4
|
isum |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( exp ‘ Σ 𝑘 ∈ 𝑍 𝐵 ) = ( exp ‘ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) ) |
34 |
28 31 33
|
3brtr4d |
⊢ ( 𝜑 → seq 𝑀 ( · , ( exp ∘ ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ) ⇝ ( exp ‘ Σ 𝑘 ∈ 𝑍 𝐵 ) ) |
35 |
|
fvco3 |
⊢ ( ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( exp ‘ ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
36 |
30 35
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( exp ‘ ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
37 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( exp ‘ ( ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
38 |
3
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) = ( exp ‘ 𝐵 ) ) |
39 |
36 37 38
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( exp ∘ ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( exp ‘ 𝐵 ) ) |
40 |
|
efcl |
⊢ ( 𝐵 ∈ ℂ → ( exp ‘ 𝐵 ) ∈ ℂ ) |
41 |
4 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( exp ‘ 𝐵 ) ∈ ℂ ) |
42 |
1 2 8 34 39 41
|
iprodn0 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 ( exp ‘ 𝐵 ) = ( exp ‘ Σ 𝑘 ∈ 𝑍 𝐵 ) ) |