Metamath Proof Explorer


Theorem iprodefisum

Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018)

Ref Expression
Hypotheses iprodefisum.1 𝑍 = ( ℤ𝑀 )
iprodefisum.2 ( 𝜑𝑀 ∈ ℤ )
iprodefisum.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
iprodefisum.4 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
iprodefisum.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
Assertion iprodefisum ( 𝜑 → ∏ 𝑘𝑍 ( exp ‘ 𝐵 ) = ( exp ‘ Σ 𝑘𝑍 𝐵 ) )

Proof

Step Hyp Ref Expression
1 iprodefisum.1 𝑍 = ( ℤ𝑀 )
2 iprodefisum.2 ( 𝜑𝑀 ∈ ℤ )
3 iprodefisum.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
4 iprodefisum.4 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
5 iprodefisum.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
6 1 2 3 4 5 isumcl ( 𝜑 → Σ 𝑘𝑍 𝐵 ∈ ℂ )
7 efne0 ( Σ 𝑘𝑍 𝐵 ∈ ℂ → ( exp ‘ Σ 𝑘𝑍 𝐵 ) ≠ 0 )
8 6 7 syl ( 𝜑 → ( exp ‘ Σ 𝑘𝑍 𝐵 ) ≠ 0 )
9 efcn exp ∈ ( ℂ –cn→ ℂ )
10 9 a1i ( 𝜑 → exp ∈ ( ℂ –cn→ ℂ ) )
11 fveq2 ( 𝑗 = 𝑘 → ( 𝐹𝑗 ) = ( 𝐹𝑘 ) )
12 eqid ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) = ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) )
13 fvex ( 𝐹𝑘 ) ∈ V
14 11 12 13 fvmpt ( 𝑘𝑍 → ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
15 14 adantl ( ( 𝜑𝑘𝑍 ) → ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
16 3 4 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
17 15 16 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) ∈ ℂ )
18 1 2 17 serf ( 𝜑 → seq 𝑀 ( + , ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) : 𝑍 ⟶ ℂ )
19 1 eqcomi ( ℤ𝑀 ) = 𝑍
20 14 19 eleq2s ( 𝑘 ∈ ( ℤ𝑀 ) → ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
21 20 adantl ( ( 𝜑𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
22 2 21 seqfeq ( 𝜑 → seq 𝑀 ( + , ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) = seq 𝑀 ( + , 𝐹 ) )
23 climdm ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
24 5 23 sylib ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
25 22 24 eqbrtrd ( 𝜑 → seq 𝑀 ( + , ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
26 climcl ( seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ )
27 24 26 syl ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ )
28 1 2 10 18 25 27 climcncf ( 𝜑 → ( exp ∘ seq 𝑀 ( + , ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ) ⇝ ( exp ‘ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) )
29 11 cbvmptv ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) = ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) )
30 16 29 fmptd ( 𝜑 → ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) : 𝑍 ⟶ ℂ )
31 1 2 30 iprodefisumlem ( 𝜑 → seq 𝑀 ( · , ( exp ∘ ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ) = ( exp ∘ seq 𝑀 ( + , ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ) )
32 1 2 3 4 isum ( 𝜑 → Σ 𝑘𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
33 32 fveq2d ( 𝜑 → ( exp ‘ Σ 𝑘𝑍 𝐵 ) = ( exp ‘ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) )
34 28 31 33 3brtr4d ( 𝜑 → seq 𝑀 ( · , ( exp ∘ ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ) ⇝ ( exp ‘ Σ 𝑘𝑍 𝐵 ) )
35 fvco3 ( ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) : 𝑍 ⟶ ℂ ∧ 𝑘𝑍 ) → ( ( exp ∘ ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ‘ 𝑘 ) = ( exp ‘ ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) ) )
36 30 35 sylan ( ( 𝜑𝑘𝑍 ) → ( ( exp ∘ ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ‘ 𝑘 ) = ( exp ‘ ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) ) )
37 15 fveq2d ( ( 𝜑𝑘𝑍 ) → ( exp ‘ ( ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ‘ 𝑘 ) ) = ( exp ‘ ( 𝐹𝑘 ) ) )
38 3 fveq2d ( ( 𝜑𝑘𝑍 ) → ( exp ‘ ( 𝐹𝑘 ) ) = ( exp ‘ 𝐵 ) )
39 36 37 38 3eqtrd ( ( 𝜑𝑘𝑍 ) → ( ( exp ∘ ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) ) ) ‘ 𝑘 ) = ( exp ‘ 𝐵 ) )
40 efcl ( 𝐵 ∈ ℂ → ( exp ‘ 𝐵 ) ∈ ℂ )
41 4 40 syl ( ( 𝜑𝑘𝑍 ) → ( exp ‘ 𝐵 ) ∈ ℂ )
42 1 2 8 34 39 41 iprodn0 ( 𝜑 → ∏ 𝑘𝑍 ( exp ‘ 𝐵 ) = ( exp ‘ Σ 𝑘𝑍 𝐵 ) )