| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodefisum.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iprodefisum.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | iprodefisum.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 4 |  | iprodefisum.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | iprodefisum.5 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 6 | 1 2 3 4 5 | isumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 𝐵  ∈  ℂ ) | 
						
							| 7 |  | efne0 | ⊢ ( Σ 𝑘  ∈  𝑍 𝐵  ∈  ℂ  →  ( exp ‘ Σ 𝑘  ∈  𝑍 𝐵 )  ≠  0 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ( exp ‘ Σ 𝑘  ∈  𝑍 𝐵 )  ≠  0 ) | 
						
							| 9 |  | efcn | ⊢ exp  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  exp  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 13 |  | fvex | ⊢ ( 𝐹 ‘ 𝑘 )  ∈  V | 
						
							| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 16 | 3 4 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 17 | 15 16 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 18 | 1 2 17 | serf | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 19 | 1 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑀 )  =  𝑍 | 
						
							| 20 | 14 19 | eleq2s | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 22 | 2 21 | seqfeq | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) )  =  seq 𝑀 (  +  ,  𝐹 ) ) | 
						
							| 23 |  | climdm | ⊢ ( seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝   ↔  seq 𝑀 (  +  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) ) ) | 
						
							| 24 | 5 23 | sylib | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) ) ) | 
						
							| 25 | 22 24 | eqbrtrd | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) )  ⇝  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) ) ) | 
						
							| 26 |  | climcl | ⊢ ( seq 𝑀 (  +  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) )  →  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) )  ∈  ℂ ) | 
						
							| 27 | 24 26 | syl | ⊢ ( 𝜑  →  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) )  ∈  ℂ ) | 
						
							| 28 | 1 2 10 18 25 27 | climcncf | ⊢ ( 𝜑  →  ( exp  ∘  seq 𝑀 (  +  ,  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) )  ⇝  ( exp ‘ (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) ) ) ) | 
						
							| 29 | 11 | cbvmptv | ⊢ ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 30 | 16 29 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 31 | 1 2 30 | iprodefisumlem | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  ( exp  ∘  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) )  =  ( exp  ∘  seq 𝑀 (  +  ,  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 32 | 1 2 3 4 | isum | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 𝐵  =  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) ) ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( 𝜑  →  ( exp ‘ Σ 𝑘  ∈  𝑍 𝐵 )  =  ( exp ‘ (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) ) ) ) | 
						
							| 34 | 28 31 33 | 3brtr4d | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  ( exp  ∘  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) )  ⇝  ( exp ‘ Σ 𝑘  ∈  𝑍 𝐵 ) ) | 
						
							| 35 |  | fvco3 | ⊢ ( ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℂ  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 )  =  ( exp ‘ ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 36 | 30 35 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 )  =  ( exp ‘ ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 37 | 15 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( exp ‘ ( ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑘 ) )  =  ( exp ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 38 | 3 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( exp ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( exp ‘ 𝐵 ) ) | 
						
							| 39 | 36 37 38 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( exp  ∘  ( 𝑗  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 )  =  ( exp ‘ 𝐵 ) ) | 
						
							| 40 |  | efcl | ⊢ ( 𝐵  ∈  ℂ  →  ( exp ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 41 | 4 40 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( exp ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 42 | 1 2 8 34 39 41 | iprodn0 | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑍 ( exp ‘ 𝐵 )  =  ( exp ‘ Σ 𝑘  ∈  𝑍 𝐵 ) ) |