Metamath Proof Explorer


Theorem iprodefisum

Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018)

Ref Expression
Hypotheses iprodefisum.1 Z = M
iprodefisum.2 φ M
iprodefisum.3 φ k Z F k = B
iprodefisum.4 φ k Z B
iprodefisum.5 φ seq M + F dom
Assertion iprodefisum φ k Z e B = e k Z B

Proof

Step Hyp Ref Expression
1 iprodefisum.1 Z = M
2 iprodefisum.2 φ M
3 iprodefisum.3 φ k Z F k = B
4 iprodefisum.4 φ k Z B
5 iprodefisum.5 φ seq M + F dom
6 1 2 3 4 5 isumcl φ k Z B
7 efne0 k Z B e k Z B 0
8 6 7 syl φ e k Z B 0
9 efcn exp : cn
10 9 a1i φ exp : cn
11 fveq2 j = k F j = F k
12 eqid j Z F j = j Z F j
13 fvex F k V
14 11 12 13 fvmpt k Z j Z F j k = F k
15 14 adantl φ k Z j Z F j k = F k
16 3 4 eqeltrd φ k Z F k
17 15 16 eqeltrd φ k Z j Z F j k
18 1 2 17 serf φ seq M + j Z F j : Z
19 1 eqcomi M = Z
20 14 19 eleq2s k M j Z F j k = F k
21 20 adantl φ k M j Z F j k = F k
22 2 21 seqfeq φ seq M + j Z F j = seq M + F
23 climdm seq M + F dom seq M + F seq M + F
24 5 23 sylib φ seq M + F seq M + F
25 22 24 eqbrtrd φ seq M + j Z F j seq M + F
26 climcl seq M + F seq M + F seq M + F
27 24 26 syl φ seq M + F
28 1 2 10 18 25 27 climcncf φ exp seq M + j Z F j e seq M + F
29 11 cbvmptv j Z F j = k Z F k
30 16 29 fmptd φ j Z F j : Z
31 1 2 30 iprodefisumlem φ seq M × exp j Z F j = exp seq M + j Z F j
32 1 2 3 4 isum φ k Z B = seq M + F
33 32 fveq2d φ e k Z B = e seq M + F
34 28 31 33 3brtr4d φ seq M × exp j Z F j e k Z B
35 fvco3 j Z F j : Z k Z exp j Z F j k = e j Z F j k
36 30 35 sylan φ k Z exp j Z F j k = e j Z F j k
37 15 fveq2d φ k Z e j Z F j k = e F k
38 3 fveq2d φ k Z e F k = e B
39 36 37 38 3eqtrd φ k Z exp j Z F j k = e B
40 efcl B e B
41 4 40 syl φ k Z e B
42 1 2 8 34 39 41 iprodn0 φ k Z e B = e k Z B