Step |
Hyp |
Ref |
Expression |
1 |
|
iprodefisum.1 |
|
2 |
|
iprodefisum.2 |
|
3 |
|
iprodefisum.3 |
|
4 |
|
iprodefisum.4 |
|
5 |
|
iprodefisum.5 |
|
6 |
1 2 3 4 5
|
isumcl |
|
7 |
|
efne0 |
|
8 |
6 7
|
syl |
|
9 |
|
efcn |
|
10 |
9
|
a1i |
|
11 |
|
fveq2 |
|
12 |
|
eqid |
|
13 |
|
fvex |
|
14 |
11 12 13
|
fvmpt |
|
15 |
14
|
adantl |
|
16 |
3 4
|
eqeltrd |
|
17 |
15 16
|
eqeltrd |
|
18 |
1 2 17
|
serf |
|
19 |
1
|
eqcomi |
|
20 |
14 19
|
eleq2s |
|
21 |
20
|
adantl |
|
22 |
2 21
|
seqfeq |
|
23 |
|
climdm |
|
24 |
5 23
|
sylib |
|
25 |
22 24
|
eqbrtrd |
|
26 |
|
climcl |
|
27 |
24 26
|
syl |
|
28 |
1 2 10 18 25 27
|
climcncf |
|
29 |
11
|
cbvmptv |
|
30 |
16 29
|
fmptd |
|
31 |
1 2 30
|
iprodefisumlem |
|
32 |
1 2 3 4
|
isum |
|
33 |
32
|
fveq2d |
|
34 |
28 31 33
|
3brtr4d |
|
35 |
|
fvco3 |
|
36 |
30 35
|
sylan |
|
37 |
15
|
fveq2d |
|
38 |
3
|
fveq2d |
|
39 |
36 37 38
|
3eqtrd |
|
40 |
|
efcl |
|
41 |
4 40
|
syl |
|
42 |
1 2 8 34 39 41
|
iprodn0 |
|