| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iprodefisum.1 |
|
| 2 |
|
iprodefisum.2 |
|
| 3 |
|
iprodefisum.3 |
|
| 4 |
|
iprodefisum.4 |
|
| 5 |
|
iprodefisum.5 |
|
| 6 |
1 2 3 4 5
|
isumcl |
|
| 7 |
|
efne0 |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
efcn |
|
| 10 |
9
|
a1i |
|
| 11 |
|
fveq2 |
|
| 12 |
|
eqid |
|
| 13 |
|
fvex |
|
| 14 |
11 12 13
|
fvmpt |
|
| 15 |
14
|
adantl |
|
| 16 |
3 4
|
eqeltrd |
|
| 17 |
15 16
|
eqeltrd |
|
| 18 |
1 2 17
|
serf |
|
| 19 |
1
|
eqcomi |
|
| 20 |
14 19
|
eleq2s |
|
| 21 |
20
|
adantl |
|
| 22 |
2 21
|
seqfeq |
|
| 23 |
|
climdm |
|
| 24 |
5 23
|
sylib |
|
| 25 |
22 24
|
eqbrtrd |
|
| 26 |
|
climcl |
|
| 27 |
24 26
|
syl |
|
| 28 |
1 2 10 18 25 27
|
climcncf |
|
| 29 |
11
|
cbvmptv |
|
| 30 |
16 29
|
fmptd |
|
| 31 |
1 2 30
|
iprodefisumlem |
|
| 32 |
1 2 3 4
|
isum |
|
| 33 |
32
|
fveq2d |
|
| 34 |
28 31 33
|
3brtr4d |
|
| 35 |
|
fvco3 |
|
| 36 |
30 35
|
sylan |
|
| 37 |
15
|
fveq2d |
|
| 38 |
3
|
fveq2d |
|
| 39 |
36 37 38
|
3eqtrd |
|
| 40 |
|
efcl |
|
| 41 |
4 40
|
syl |
|
| 42 |
1 2 8 34 39 41
|
iprodn0 |
|