Metamath Proof Explorer


Theorem iprodgam

Description: An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018)

Ref Expression
Hypothesis iprodgam.1 φ A
Assertion iprodgam φ Γ A = k 1 + 1 k A 1 + A k A

Proof

Step Hyp Ref Expression
1 iprodgam.1 φ A
2 eflgam A e log Γ A = Γ A
3 1 2 syl φ e log Γ A = Γ A
4 oveq1 z = A z log k + 1 k = A log k + 1 k
5 oveq1 z = A z k = A k
6 5 fvoveq1d z = A log z k + 1 = log A k + 1
7 4 6 oveq12d z = A z log k + 1 k log z k + 1 = A log k + 1 k log A k + 1
8 7 sumeq2sdv z = A k z log k + 1 k log z k + 1 = k A log k + 1 k log A k + 1
9 fveq2 z = A log z = log A
10 8 9 oveq12d z = A k z log k + 1 k log z k + 1 log z = k A log k + 1 k log A k + 1 log A
11 df-lgam log Γ = z k z log k + 1 k log z k + 1 log z
12 ovex k A log k + 1 k log A k + 1 log A V
13 10 11 12 fvmpt A log Γ A = k A log k + 1 k log A k + 1 log A
14 1 13 syl φ log Γ A = k A log k + 1 k log A k + 1 log A
15 14 fveq2d φ e log Γ A = e k A log k + 1 k log A k + 1 log A
16 nnuz = 1
17 1zzd φ 1
18 oveq1 j = k j + 1 = k + 1
19 id j = k j = k
20 18 19 oveq12d j = k j + 1 j = k + 1 k
21 20 fveq2d j = k log j + 1 j = log k + 1 k
22 21 oveq2d j = k A log j + 1 j = A log k + 1 k
23 oveq2 j = k A j = A k
24 23 fvoveq1d j = k log A j + 1 = log A k + 1
25 22 24 oveq12d j = k A log j + 1 j log A j + 1 = A log k + 1 k log A k + 1
26 eqid j A log j + 1 j log A j + 1 = j A log j + 1 j log A j + 1
27 ovex A log k + 1 k log A k + 1 V
28 25 26 27 fvmpt k j A log j + 1 j log A j + 1 k = A log k + 1 k log A k + 1
29 28 adantl φ k j A log j + 1 j log A j + 1 k = A log k + 1 k log A k + 1
30 1 eldifad φ A
31 30 adantr φ k A
32 peano2nn k k + 1
33 32 adantl φ k k + 1
34 33 nncnd φ k k + 1
35 nncn k k
36 35 adantl φ k k
37 nnne0 k k 0
38 37 adantl φ k k 0
39 34 36 38 divcld φ k k + 1 k
40 33 nnne0d φ k k + 1 0
41 34 36 40 38 divne0d φ k k + 1 k 0
42 39 41 logcld φ k log k + 1 k
43 31 42 mulcld φ k A log k + 1 k
44 31 36 38 divcld φ k A k
45 1cnd φ k 1
46 44 45 addcld φ k A k + 1
47 1 adantr φ k A
48 simpr φ k k
49 47 48 dmgmdivn0 φ k A k + 1 0
50 46 49 logcld φ k log A k + 1
51 43 50 subcld φ k A log k + 1 k log A k + 1
52 26 1 lgamcvg φ seq 1 + j A log j + 1 j log A j + 1 log Γ A + log A
53 seqex seq 1 + j A log j + 1 j log A j + 1 V
54 ovex log Γ A + log A V
55 53 54 breldm seq 1 + j A log j + 1 j log A j + 1 log Γ A + log A seq 1 + j A log j + 1 j log A j + 1 dom
56 52 55 syl φ seq 1 + j A log j + 1 j log A j + 1 dom
57 16 17 29 51 56 isumcl φ k A log k + 1 k log A k + 1
58 1 dmgmn0 φ A 0
59 30 58 logcld φ log A
60 efsub k A log k + 1 k log A k + 1 log A e k A log k + 1 k log A k + 1 log A = e k A log k + 1 k log A k + 1 e log A
61 57 59 60 syl2anc φ e k A log k + 1 k log A k + 1 log A = e k A log k + 1 k log A k + 1 e log A
62 16 17 29 51 56 iprodefisum φ k e A log k + 1 k log A k + 1 = e k A log k + 1 k log A k + 1
63 efsub A log k + 1 k log A k + 1 e A log k + 1 k log A k + 1 = e A log k + 1 k e log A k + 1
64 43 50 63 syl2anc φ k e A log k + 1 k log A k + 1 = e A log k + 1 k e log A k + 1
65 36 45 36 38 divdird φ k k + 1 k = k k + 1 k
66 36 38 dividd φ k k k = 1
67 66 oveq1d φ k k k + 1 k = 1 + 1 k
68 65 67 eqtrd φ k k + 1 k = 1 + 1 k
69 68 fveq2d φ k log k + 1 k = log 1 + 1 k
70 69 oveq2d φ k A log k + 1 k = A log 1 + 1 k
71 70 fveq2d φ k e A log k + 1 k = e A log 1 + 1 k
72 1rp 1 +
73 72 a1i φ k 1 +
74 48 nnrpd φ k k +
75 74 rpreccld φ k 1 k +
76 73 75 rpaddcld φ k 1 + 1 k +
77 76 rpcnd φ k 1 + 1 k
78 76 rpne0d φ k 1 + 1 k 0
79 77 78 31 cxpefd φ k 1 + 1 k A = e A log 1 + 1 k
80 71 79 eqtr4d φ k e A log k + 1 k = 1 + 1 k A
81 eflog A k + 1 A k + 1 0 e log A k + 1 = A k + 1
82 46 49 81 syl2anc φ k e log A k + 1 = A k + 1
83 44 45 addcomd φ k A k + 1 = 1 + A k
84 82 83 eqtrd φ k e log A k + 1 = 1 + A k
85 80 84 oveq12d φ k e A log k + 1 k e log A k + 1 = 1 + 1 k A 1 + A k
86 64 85 eqtrd φ k e A log k + 1 k log A k + 1 = 1 + 1 k A 1 + A k
87 86 prodeq2dv φ k e A log k + 1 k log A k + 1 = k 1 + 1 k A 1 + A k
88 62 87 eqtr3d φ e k A log k + 1 k log A k + 1 = k 1 + 1 k A 1 + A k
89 eflog A A 0 e log A = A
90 30 58 89 syl2anc φ e log A = A
91 88 90 oveq12d φ e k A log k + 1 k log A k + 1 e log A = k 1 + 1 k A 1 + A k A
92 61 91 eqtrd φ e k A log k + 1 k log A k + 1 log A = k 1 + 1 k A 1 + A k A
93 15 92 eqtrd φ e log Γ A = k 1 + 1 k A 1 + A k A
94 3 93 eqtr3d φ Γ A = k 1 + 1 k A 1 + A k A