| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodgam.1 |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 2 |  | eflgam |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( ph -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) | 
						
							| 4 |  | oveq1 |  |-  ( z = A -> ( z x. ( log ` ( ( k + 1 ) / k ) ) ) = ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( z = A -> ( z / k ) = ( A / k ) ) | 
						
							| 6 | 5 | fvoveq1d |  |-  ( z = A -> ( log ` ( ( z / k ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) | 
						
							| 7 | 4 6 | oveq12d |  |-  ( z = A -> ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 8 | 7 | sumeq2sdv |  |-  ( z = A -> sum_ k e. NN ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) = sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( z = A -> ( log ` z ) = ( log ` A ) ) | 
						
							| 10 | 8 9 | oveq12d |  |-  ( z = A -> ( sum_ k e. NN ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) - ( log ` z ) ) = ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) | 
						
							| 11 |  | df-lgam |  |-  log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ k e. NN ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) - ( log ` z ) ) ) | 
						
							| 12 |  | ovex |  |-  ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) e. _V | 
						
							| 13 | 10 11 12 | fvmpt |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) = ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) | 
						
							| 14 | 1 13 | syl |  |-  ( ph -> ( log_G ` A ) = ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ph -> ( exp ` ( log_G ` A ) ) = ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) ) | 
						
							| 16 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 17 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 18 |  | oveq1 |  |-  ( j = k -> ( j + 1 ) = ( k + 1 ) ) | 
						
							| 19 |  | id |  |-  ( j = k -> j = k ) | 
						
							| 20 | 18 19 | oveq12d |  |-  ( j = k -> ( ( j + 1 ) / j ) = ( ( k + 1 ) / k ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( j = k -> ( log ` ( ( j + 1 ) / j ) ) = ( log ` ( ( k + 1 ) / k ) ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( j = k -> ( A x. ( log ` ( ( j + 1 ) / j ) ) ) = ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( j = k -> ( A / j ) = ( A / k ) ) | 
						
							| 24 | 23 | fvoveq1d |  |-  ( j = k -> ( log ` ( ( A / j ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) | 
						
							| 25 | 22 24 | oveq12d |  |-  ( j = k -> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 26 |  | eqid |  |-  ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) = ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) | 
						
							| 27 |  | ovex |  |-  ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. _V | 
						
							| 28 | 25 26 27 | fvmpt |  |-  ( k e. NN -> ( ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 30 | 1 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ k e. NN ) -> A e. CC ) | 
						
							| 32 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) | 
						
							| 34 | 33 | nncnd |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. CC ) | 
						
							| 35 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ph /\ k e. NN ) -> k e. CC ) | 
						
							| 37 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ k e. NN ) -> k =/= 0 ) | 
						
							| 39 | 34 36 38 | divcld |  |-  ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) e. CC ) | 
						
							| 40 | 33 | nnne0d |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) =/= 0 ) | 
						
							| 41 | 34 36 40 38 | divne0d |  |-  ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) =/= 0 ) | 
						
							| 42 | 39 41 | logcld |  |-  ( ( ph /\ k e. NN ) -> ( log ` ( ( k + 1 ) / k ) ) e. CC ) | 
						
							| 43 | 31 42 | mulcld |  |-  ( ( ph /\ k e. NN ) -> ( A x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) | 
						
							| 44 | 31 36 38 | divcld |  |-  ( ( ph /\ k e. NN ) -> ( A / k ) e. CC ) | 
						
							| 45 |  | 1cnd |  |-  ( ( ph /\ k e. NN ) -> 1 e. CC ) | 
						
							| 46 | 44 45 | addcld |  |-  ( ( ph /\ k e. NN ) -> ( ( A / k ) + 1 ) e. CC ) | 
						
							| 47 | 1 | adantr |  |-  ( ( ph /\ k e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 48 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 49 | 47 48 | dmgmdivn0 |  |-  ( ( ph /\ k e. NN ) -> ( ( A / k ) + 1 ) =/= 0 ) | 
						
							| 50 | 46 49 | logcld |  |-  ( ( ph /\ k e. NN ) -> ( log ` ( ( A / k ) + 1 ) ) e. CC ) | 
						
							| 51 | 43 50 | subcld |  |-  ( ( ph /\ k e. NN ) -> ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) | 
						
							| 52 | 26 1 | lgamcvg |  |-  ( ph -> seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 53 |  | seqex |  |-  seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) e. _V | 
						
							| 54 |  | ovex |  |-  ( ( log_G ` A ) + ( log ` A ) ) e. _V | 
						
							| 55 | 53 54 | breldm |  |-  ( seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) -> seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) e. dom ~~> ) | 
						
							| 56 | 52 55 | syl |  |-  ( ph -> seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) e. dom ~~> ) | 
						
							| 57 | 16 17 29 51 56 | isumcl |  |-  ( ph -> sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) | 
						
							| 58 | 1 | dmgmn0 |  |-  ( ph -> A =/= 0 ) | 
						
							| 59 | 30 58 | logcld |  |-  ( ph -> ( log ` A ) e. CC ) | 
						
							| 60 |  | efsub |  |-  ( ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) = ( ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) / ( exp ` ( log ` A ) ) ) ) | 
						
							| 61 | 57 59 60 | syl2anc |  |-  ( ph -> ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) = ( ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) / ( exp ` ( log ` A ) ) ) ) | 
						
							| 62 | 16 17 29 51 56 | iprodefisum |  |-  ( ph -> prod_ k e. NN ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) | 
						
							| 63 |  | efsub |  |-  ( ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC /\ ( log ` ( ( A / k ) + 1 ) ) e. CC ) -> ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) / ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) ) ) | 
						
							| 64 | 43 50 63 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) / ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) ) ) | 
						
							| 65 | 36 45 36 38 | divdird |  |-  ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) = ( ( k / k ) + ( 1 / k ) ) ) | 
						
							| 66 | 36 38 | dividd |  |-  ( ( ph /\ k e. NN ) -> ( k / k ) = 1 ) | 
						
							| 67 | 66 | oveq1d |  |-  ( ( ph /\ k e. NN ) -> ( ( k / k ) + ( 1 / k ) ) = ( 1 + ( 1 / k ) ) ) | 
						
							| 68 | 65 67 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) = ( 1 + ( 1 / k ) ) ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( ph /\ k e. NN ) -> ( log ` ( ( k + 1 ) / k ) ) = ( log ` ( 1 + ( 1 / k ) ) ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ph /\ k e. NN ) -> ( A x. ( log ` ( ( k + 1 ) / k ) ) ) = ( A x. ( log ` ( 1 + ( 1 / k ) ) ) ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) = ( exp ` ( A x. ( log ` ( 1 + ( 1 / k ) ) ) ) ) ) | 
						
							| 72 |  | 1rp |  |-  1 e. RR+ | 
						
							| 73 | 72 | a1i |  |-  ( ( ph /\ k e. NN ) -> 1 e. RR+ ) | 
						
							| 74 | 48 | nnrpd |  |-  ( ( ph /\ k e. NN ) -> k e. RR+ ) | 
						
							| 75 | 74 | rpreccld |  |-  ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR+ ) | 
						
							| 76 | 73 75 | rpaddcld |  |-  ( ( ph /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR+ ) | 
						
							| 77 | 76 | rpcnd |  |-  ( ( ph /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. CC ) | 
						
							| 78 | 76 | rpne0d |  |-  ( ( ph /\ k e. NN ) -> ( 1 + ( 1 / k ) ) =/= 0 ) | 
						
							| 79 | 77 78 31 | cxpefd |  |-  ( ( ph /\ k e. NN ) -> ( ( 1 + ( 1 / k ) ) ^c A ) = ( exp ` ( A x. ( log ` ( 1 + ( 1 / k ) ) ) ) ) ) | 
						
							| 80 | 71 79 | eqtr4d |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( 1 + ( 1 / k ) ) ^c A ) ) | 
						
							| 81 |  | eflog |  |-  ( ( ( ( A / k ) + 1 ) e. CC /\ ( ( A / k ) + 1 ) =/= 0 ) -> ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) = ( ( A / k ) + 1 ) ) | 
						
							| 82 | 46 49 81 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) = ( ( A / k ) + 1 ) ) | 
						
							| 83 | 44 45 | addcomd |  |-  ( ( ph /\ k e. NN ) -> ( ( A / k ) + 1 ) = ( 1 + ( A / k ) ) ) | 
						
							| 84 | 82 83 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) = ( 1 + ( A / k ) ) ) | 
						
							| 85 | 80 84 | oveq12d |  |-  ( ( ph /\ k e. NN ) -> ( ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) / ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) | 
						
							| 86 | 64 85 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) | 
						
							| 87 | 86 | prodeq2dv |  |-  ( ph -> prod_ k e. NN ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) | 
						
							| 88 | 62 87 | eqtr3d |  |-  ( ph -> ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) | 
						
							| 89 |  | eflog |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 90 | 30 58 89 | syl2anc |  |-  ( ph -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 91 | 88 90 | oveq12d |  |-  ( ph -> ( ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) / ( exp ` ( log ` A ) ) ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) | 
						
							| 92 | 61 91 | eqtrd |  |-  ( ph -> ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) | 
						
							| 93 | 15 92 | eqtrd |  |-  ( ph -> ( exp ` ( log_G ` A ) ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) | 
						
							| 94 | 3 93 | eqtr3d |  |-  ( ph -> ( _G ` A ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) |