Step |
Hyp |
Ref |
Expression |
1 |
|
iprodgam.1 |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
2 |
|
eflgam |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
3 |
1 2
|
syl |
|- ( ph -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
4 |
|
oveq1 |
|- ( z = A -> ( z x. ( log ` ( ( k + 1 ) / k ) ) ) = ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
5 |
|
oveq1 |
|- ( z = A -> ( z / k ) = ( A / k ) ) |
6 |
5
|
fvoveq1d |
|- ( z = A -> ( log ` ( ( z / k ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) |
7 |
4 6
|
oveq12d |
|- ( z = A -> ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
8 |
7
|
sumeq2sdv |
|- ( z = A -> sum_ k e. NN ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) = sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
9 |
|
fveq2 |
|- ( z = A -> ( log ` z ) = ( log ` A ) ) |
10 |
8 9
|
oveq12d |
|- ( z = A -> ( sum_ k e. NN ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) - ( log ` z ) ) = ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) |
11 |
|
df-lgam |
|- log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ k e. NN ( ( z x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( z / k ) + 1 ) ) ) - ( log ` z ) ) ) |
12 |
|
ovex |
|- ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) e. _V |
13 |
10 11 12
|
fvmpt |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) = ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) |
14 |
1 13
|
syl |
|- ( ph -> ( log_G ` A ) = ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) |
15 |
14
|
fveq2d |
|- ( ph -> ( exp ` ( log_G ` A ) ) = ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) ) |
16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
17 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
18 |
|
oveq1 |
|- ( j = k -> ( j + 1 ) = ( k + 1 ) ) |
19 |
|
id |
|- ( j = k -> j = k ) |
20 |
18 19
|
oveq12d |
|- ( j = k -> ( ( j + 1 ) / j ) = ( ( k + 1 ) / k ) ) |
21 |
20
|
fveq2d |
|- ( j = k -> ( log ` ( ( j + 1 ) / j ) ) = ( log ` ( ( k + 1 ) / k ) ) ) |
22 |
21
|
oveq2d |
|- ( j = k -> ( A x. ( log ` ( ( j + 1 ) / j ) ) ) = ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
23 |
|
oveq2 |
|- ( j = k -> ( A / j ) = ( A / k ) ) |
24 |
23
|
fvoveq1d |
|- ( j = k -> ( log ` ( ( A / j ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) |
25 |
22 24
|
oveq12d |
|- ( j = k -> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
26 |
|
eqid |
|- ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) = ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) |
27 |
|
ovex |
|- ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. _V |
28 |
25 26 27
|
fvmpt |
|- ( k e. NN -> ( ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
29 |
28
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
30 |
1
|
eldifad |
|- ( ph -> A e. CC ) |
31 |
30
|
adantr |
|- ( ( ph /\ k e. NN ) -> A e. CC ) |
32 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
33 |
32
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
34 |
33
|
nncnd |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. CC ) |
35 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
36 |
35
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. CC ) |
37 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
38 |
37
|
adantl |
|- ( ( ph /\ k e. NN ) -> k =/= 0 ) |
39 |
34 36 38
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) e. CC ) |
40 |
33
|
nnne0d |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) =/= 0 ) |
41 |
34 36 40 38
|
divne0d |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) =/= 0 ) |
42 |
39 41
|
logcld |
|- ( ( ph /\ k e. NN ) -> ( log ` ( ( k + 1 ) / k ) ) e. CC ) |
43 |
31 42
|
mulcld |
|- ( ( ph /\ k e. NN ) -> ( A x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) |
44 |
31 36 38
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( A / k ) e. CC ) |
45 |
|
1cnd |
|- ( ( ph /\ k e. NN ) -> 1 e. CC ) |
46 |
44 45
|
addcld |
|- ( ( ph /\ k e. NN ) -> ( ( A / k ) + 1 ) e. CC ) |
47 |
1
|
adantr |
|- ( ( ph /\ k e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
48 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
49 |
47 48
|
dmgmdivn0 |
|- ( ( ph /\ k e. NN ) -> ( ( A / k ) + 1 ) =/= 0 ) |
50 |
46 49
|
logcld |
|- ( ( ph /\ k e. NN ) -> ( log ` ( ( A / k ) + 1 ) ) e. CC ) |
51 |
43 50
|
subcld |
|- ( ( ph /\ k e. NN ) -> ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) |
52 |
26 1
|
lgamcvg |
|- ( ph -> seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) |
53 |
|
seqex |
|- seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) e. _V |
54 |
|
ovex |
|- ( ( log_G ` A ) + ( log ` A ) ) e. _V |
55 |
53 54
|
breldm |
|- ( seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) -> seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) e. dom ~~> ) |
56 |
52 55
|
syl |
|- ( ph -> seq 1 ( + , ( j e. NN |-> ( ( A x. ( log ` ( ( j + 1 ) / j ) ) ) - ( log ` ( ( A / j ) + 1 ) ) ) ) ) e. dom ~~> ) |
57 |
16 17 29 51 56
|
isumcl |
|- ( ph -> sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) |
58 |
1
|
dmgmn0 |
|- ( ph -> A =/= 0 ) |
59 |
30 58
|
logcld |
|- ( ph -> ( log ` A ) e. CC ) |
60 |
|
efsub |
|- ( ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) = ( ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) / ( exp ` ( log ` A ) ) ) ) |
61 |
57 59 60
|
syl2anc |
|- ( ph -> ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) = ( ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) / ( exp ` ( log ` A ) ) ) ) |
62 |
16 17 29 51 56
|
iprodefisum |
|- ( ph -> prod_ k e. NN ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
63 |
|
efsub |
|- ( ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC /\ ( log ` ( ( A / k ) + 1 ) ) e. CC ) -> ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) / ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
64 |
43 50 63
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) / ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
65 |
36 45 36 38
|
divdird |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) = ( ( k / k ) + ( 1 / k ) ) ) |
66 |
36 38
|
dividd |
|- ( ( ph /\ k e. NN ) -> ( k / k ) = 1 ) |
67 |
66
|
oveq1d |
|- ( ( ph /\ k e. NN ) -> ( ( k / k ) + ( 1 / k ) ) = ( 1 + ( 1 / k ) ) ) |
68 |
65 67
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / k ) = ( 1 + ( 1 / k ) ) ) |
69 |
68
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( log ` ( ( k + 1 ) / k ) ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
70 |
69
|
oveq2d |
|- ( ( ph /\ k e. NN ) -> ( A x. ( log ` ( ( k + 1 ) / k ) ) ) = ( A x. ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
71 |
70
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) = ( exp ` ( A x. ( log ` ( 1 + ( 1 / k ) ) ) ) ) ) |
72 |
|
1rp |
|- 1 e. RR+ |
73 |
72
|
a1i |
|- ( ( ph /\ k e. NN ) -> 1 e. RR+ ) |
74 |
48
|
nnrpd |
|- ( ( ph /\ k e. NN ) -> k e. RR+ ) |
75 |
74
|
rpreccld |
|- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
76 |
73 75
|
rpaddcld |
|- ( ( ph /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
77 |
76
|
rpcnd |
|- ( ( ph /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. CC ) |
78 |
76
|
rpne0d |
|- ( ( ph /\ k e. NN ) -> ( 1 + ( 1 / k ) ) =/= 0 ) |
79 |
77 78 31
|
cxpefd |
|- ( ( ph /\ k e. NN ) -> ( ( 1 + ( 1 / k ) ) ^c A ) = ( exp ` ( A x. ( log ` ( 1 + ( 1 / k ) ) ) ) ) ) |
80 |
71 79
|
eqtr4d |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( 1 + ( 1 / k ) ) ^c A ) ) |
81 |
|
eflog |
|- ( ( ( ( A / k ) + 1 ) e. CC /\ ( ( A / k ) + 1 ) =/= 0 ) -> ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) = ( ( A / k ) + 1 ) ) |
82 |
46 49 81
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) = ( ( A / k ) + 1 ) ) |
83 |
44 45
|
addcomd |
|- ( ( ph /\ k e. NN ) -> ( ( A / k ) + 1 ) = ( 1 + ( A / k ) ) ) |
84 |
82 83
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) = ( 1 + ( A / k ) ) ) |
85 |
80 84
|
oveq12d |
|- ( ( ph /\ k e. NN ) -> ( ( exp ` ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) / ( exp ` ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) |
86 |
64 85
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) |
87 |
86
|
prodeq2dv |
|- ( ph -> prod_ k e. NN ( exp ` ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) |
88 |
62 87
|
eqtr3d |
|- ( ph -> ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) ) |
89 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
90 |
30 58 89
|
syl2anc |
|- ( ph -> ( exp ` ( log ` A ) ) = A ) |
91 |
88 90
|
oveq12d |
|- ( ph -> ( ( exp ` sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) / ( exp ` ( log ` A ) ) ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) |
92 |
61 91
|
eqtrd |
|- ( ph -> ( exp ` ( sum_ k e. NN ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) - ( log ` A ) ) ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) |
93 |
15 92
|
eqtrd |
|- ( ph -> ( exp ` ( log_G ` A ) ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) |
94 |
3 93
|
eqtr3d |
|- ( ph -> ( _G ` A ) = ( prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^c A ) / ( 1 + ( A / k ) ) ) / A ) ) |