| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodgam.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 2 |  | eflgam | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( exp ‘ ( log Γ ‘ 𝐴 ) )  =  ( Γ ‘ 𝐴 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝜑  →  ( exp ‘ ( log Γ ‘ 𝐴 ) )  =  ( Γ ‘ 𝐴 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑧  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  =  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑧  /  𝑘 )  =  ( 𝐴  /  𝑘 ) ) | 
						
							| 6 | 5 | fvoveq1d | ⊢ ( 𝑧  =  𝐴  →  ( log ‘ ( ( 𝑧  /  𝑘 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) | 
						
							| 7 | 4 6 | oveq12d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑘 )  +  1 ) ) )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 8 | 7 | sumeq2sdv | ⊢ ( 𝑧  =  𝐴  →  Σ 𝑘  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑘 )  +  1 ) ) )  =  Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑧  =  𝐴  →  ( log ‘ 𝑧 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 10 | 8 9 | oveq12d | ⊢ ( 𝑧  =  𝐴  →  ( Σ 𝑘  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) )  =  ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 11 |  | df-lgam | ⊢ log Γ  =  ( 𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↦  ( Σ 𝑘  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) ) ) | 
						
							| 12 |  | ovex | ⊢ ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) )  ∈  V | 
						
							| 13 | 10 11 12 | fvmpt | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( log Γ ‘ 𝐴 )  =  ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  ( log Γ ‘ 𝐴 )  =  ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝜑  →  ( exp ‘ ( log Γ ‘ 𝐴 ) )  =  ( exp ‘ ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 16 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 17 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 19 |  | id | ⊢ ( 𝑗  =  𝑘  →  𝑗  =  𝑘 ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑗  +  1 )  /  𝑗 )  =  ( ( 𝑘  +  1 )  /  𝑘 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) )  =  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  =  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴  /  𝑗 )  =  ( 𝐴  /  𝑘 ) ) | 
						
							| 24 | 23 | fvoveq1d | ⊢ ( 𝑗  =  𝑘  →  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) | 
						
							| 25 | 22 24 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) | 
						
							| 27 |  | ovex | ⊢ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  ∈  V | 
						
							| 28 | 25 26 27 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 30 | 1 | eldifad | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 32 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 34 | 33 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 35 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 37 |  | nnne0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≠  0 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ≠  0 ) | 
						
							| 39 | 34 36 38 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  /  𝑘 )  ∈  ℂ ) | 
						
							| 40 | 33 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ≠  0 ) | 
						
							| 41 | 34 36 40 38 | divne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  /  𝑘 )  ≠  0 ) | 
						
							| 42 | 39 41 | logcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 43 | 31 42 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 44 | 31 36 38 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  /  𝑘 )  ∈  ℂ ) | 
						
							| 45 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 46 | 44 45 | addcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  /  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 47 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 49 | 47 48 | dmgmdivn0 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  /  𝑘 )  +  1 )  ≠  0 ) | 
						
							| 50 | 46 49 | logcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 51 | 43 50 | subcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 52 | 26 1 | lgamcvg | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 53 |  | seqex | ⊢ seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) )  ∈  V | 
						
							| 54 |  | ovex | ⊢ ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) )  ∈  V | 
						
							| 55 | 53 54 | breldm | ⊢ ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) )  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 56 | 52 55 | syl | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑗  +  1 )  /  𝑗 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑗 )  +  1 ) ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 57 | 16 17 29 51 56 | isumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 58 | 1 | dmgmn0 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 59 | 30 58 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 60 |  | efsub | ⊢ ( ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  ∈  ℂ  ∧  ( log ‘ 𝐴 )  ∈  ℂ )  →  ( exp ‘ ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  /  ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 61 | 57 59 60 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  /  ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 62 | 16 17 29 51 56 | iprodefisum | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ℕ ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( exp ‘ Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 63 |  | efsub | ⊢ ( ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  ∈  ℂ  ∧  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  ∈  ℂ )  →  ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  /  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 64 | 43 50 63 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  /  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 65 | 36 45 36 38 | divdird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  /  𝑘 )  =  ( ( 𝑘  /  𝑘 )  +  ( 1  /  𝑘 ) ) ) | 
						
							| 66 | 36 38 | dividd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  /  𝑘 )  =  1 ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  /  𝑘 )  +  ( 1  /  𝑘 ) )  =  ( 1  +  ( 1  /  𝑘 ) ) ) | 
						
							| 68 | 65 67 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  /  𝑘 )  =  ( 1  +  ( 1  /  𝑘 ) ) ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  =  ( log ‘ ( 1  +  ( 1  /  𝑘 ) ) ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  =  ( 𝐴  ·  ( log ‘ ( 1  +  ( 1  /  𝑘 ) ) ) ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  =  ( exp ‘ ( 𝐴  ·  ( log ‘ ( 1  +  ( 1  /  𝑘 ) ) ) ) ) ) | 
						
							| 72 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 73 | 72 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℝ+ ) | 
						
							| 74 | 48 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℝ+ ) | 
						
							| 75 | 74 | rpreccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 1  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 76 | 73 75 | rpaddcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 1  +  ( 1  /  𝑘 ) )  ∈  ℝ+ ) | 
						
							| 77 | 76 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 1  +  ( 1  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 78 | 76 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 1  +  ( 1  /  𝑘 ) )  ≠  0 ) | 
						
							| 79 | 77 78 31 | cxpefd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  =  ( exp ‘ ( 𝐴  ·  ( log ‘ ( 1  +  ( 1  /  𝑘 ) ) ) ) ) ) | 
						
							| 80 | 71 79 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  =  ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 ) ) | 
						
							| 81 |  | eflog | ⊢ ( ( ( ( 𝐴  /  𝑘 )  +  1 )  ∈  ℂ  ∧  ( ( 𝐴  /  𝑘 )  +  1 )  ≠  0 )  →  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  =  ( ( 𝐴  /  𝑘 )  +  1 ) ) | 
						
							| 82 | 46 49 81 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  =  ( ( 𝐴  /  𝑘 )  +  1 ) ) | 
						
							| 83 | 44 45 | addcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  /  𝑘 )  +  1 )  =  ( 1  +  ( 𝐴  /  𝑘 ) ) ) | 
						
							| 84 | 82 83 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  =  ( 1  +  ( 𝐴  /  𝑘 ) ) ) | 
						
							| 85 | 80 84 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  /  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) | 
						
							| 86 | 64 85 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) | 
						
							| 87 | 86 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ℕ ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) | 
						
							| 88 | 62 87 | eqtr3d | ⊢ ( 𝜑  →  ( exp ‘ Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) | 
						
							| 89 |  | eflog | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 90 | 30 58 89 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 91 | 88 90 | oveq12d | ⊢ ( 𝜑  →  ( ( exp ‘ Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  /  ( exp ‘ ( log ‘ 𝐴 ) ) )  =  ( ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  /  𝐴 ) ) | 
						
							| 92 | 61 91 | eqtrd | ⊢ ( 𝜑  →  ( exp ‘ ( Σ 𝑘  ∈  ℕ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  −  ( log ‘ 𝐴 ) ) )  =  ( ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  /  𝐴 ) ) | 
						
							| 93 | 15 92 | eqtrd | ⊢ ( 𝜑  →  ( exp ‘ ( log Γ ‘ 𝐴 ) )  =  ( ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  /  𝐴 ) ) | 
						
							| 94 | 3 93 | eqtr3d | ⊢ ( 𝜑  →  ( Γ ‘ 𝐴 )  =  ( ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑𝑐 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  /  𝐴 ) ) |