Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> D e. ( PsMet ` X ) ) |
2 |
|
metidss |
|- ( D e. ( PsMet ` X ) -> ( ~Met ` D ) C_ ( X X. X ) ) |
3 |
|
dmss |
|- ( ( ~Met ` D ) C_ ( X X. X ) -> dom ( ~Met ` D ) C_ dom ( X X. X ) ) |
4 |
2 3
|
syl |
|- ( D e. ( PsMet ` X ) -> dom ( ~Met ` D ) C_ dom ( X X. X ) ) |
5 |
|
dmxpid |
|- dom ( X X. X ) = X |
6 |
4 5
|
sseqtrdi |
|- ( D e. ( PsMet ` X ) -> dom ( ~Met ` D ) C_ X ) |
7 |
1 6
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> dom ( ~Met ` D ) C_ X ) |
8 |
|
xpss |
|- ( X X. X ) C_ ( _V X. _V ) |
9 |
2 8
|
sstrdi |
|- ( D e. ( PsMet ` X ) -> ( ~Met ` D ) C_ ( _V X. _V ) ) |
10 |
|
df-rel |
|- ( Rel ( ~Met ` D ) <-> ( ~Met ` D ) C_ ( _V X. _V ) ) |
11 |
9 10
|
sylibr |
|- ( D e. ( PsMet ` X ) -> Rel ( ~Met ` D ) ) |
12 |
1 11
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> Rel ( ~Met ` D ) ) |
13 |
|
simprl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> A ( ~Met ` D ) B ) |
14 |
|
releldm |
|- ( ( Rel ( ~Met ` D ) /\ A ( ~Met ` D ) B ) -> A e. dom ( ~Met ` D ) ) |
15 |
12 13 14
|
syl2anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> A e. dom ( ~Met ` D ) ) |
16 |
7 15
|
sseldd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> A e. X ) |
17 |
|
simprr |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> E ( ~Met ` D ) F ) |
18 |
|
releldm |
|- ( ( Rel ( ~Met ` D ) /\ E ( ~Met ` D ) F ) -> E e. dom ( ~Met ` D ) ) |
19 |
12 17 18
|
syl2anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> E e. dom ( ~Met ` D ) ) |
20 |
7 19
|
sseldd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> E e. X ) |
21 |
|
psmetsym |
|- ( ( D e. ( PsMet ` X ) /\ A e. X /\ E e. X ) -> ( A D E ) = ( E D A ) ) |
22 |
1 16 20 21
|
syl3anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D E ) = ( E D A ) ) |
23 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
24 |
23
|
fovrnda |
|- ( ( D e. ( PsMet ` X ) /\ ( E e. X /\ A e. X ) ) -> ( E D A ) e. RR* ) |
25 |
1 20 16 24
|
syl12anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( E D A ) e. RR* ) |
26 |
22 25
|
eqeltrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D E ) e. RR* ) |
27 |
|
rnss |
|- ( ( ~Met ` D ) C_ ( X X. X ) -> ran ( ~Met ` D ) C_ ran ( X X. X ) ) |
28 |
2 27
|
syl |
|- ( D e. ( PsMet ` X ) -> ran ( ~Met ` D ) C_ ran ( X X. X ) ) |
29 |
|
rnxpid |
|- ran ( X X. X ) = X |
30 |
28 29
|
sseqtrdi |
|- ( D e. ( PsMet ` X ) -> ran ( ~Met ` D ) C_ X ) |
31 |
1 30
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ran ( ~Met ` D ) C_ X ) |
32 |
|
relelrn |
|- ( ( Rel ( ~Met ` D ) /\ A ( ~Met ` D ) B ) -> B e. ran ( ~Met ` D ) ) |
33 |
12 13 32
|
syl2anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> B e. ran ( ~Met ` D ) ) |
34 |
31 33
|
sseldd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> B e. X ) |
35 |
23
|
fovrnda |
|- ( ( D e. ( PsMet ` X ) /\ ( B e. X /\ E e. X ) ) -> ( B D E ) e. RR* ) |
36 |
1 34 20 35
|
syl12anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D E ) e. RR* ) |
37 |
|
relelrn |
|- ( ( Rel ( ~Met ` D ) /\ E ( ~Met ` D ) F ) -> F e. ran ( ~Met ` D ) ) |
38 |
12 17 37
|
syl2anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> F e. ran ( ~Met ` D ) ) |
39 |
31 38
|
sseldd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> F e. X ) |
40 |
|
psmetsym |
|- ( ( D e. ( PsMet ` X ) /\ F e. X /\ B e. X ) -> ( F D B ) = ( B D F ) ) |
41 |
1 39 34 40
|
syl3anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( F D B ) = ( B D F ) ) |
42 |
23
|
fovrnda |
|- ( ( D e. ( PsMet ` X ) /\ ( F e. X /\ B e. X ) ) -> ( F D B ) e. RR* ) |
43 |
1 39 34 42
|
syl12anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( F D B ) e. RR* ) |
44 |
41 43
|
eqeltrrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D F ) e. RR* ) |
45 |
|
psmettri2 |
|- ( ( D e. ( PsMet ` X ) /\ ( B e. X /\ A e. X /\ E e. X ) ) -> ( A D E ) <_ ( ( B D A ) +e ( B D E ) ) ) |
46 |
1 34 16 20 45
|
syl13anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D E ) <_ ( ( B D A ) +e ( B D E ) ) ) |
47 |
|
psmetsym |
|- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
48 |
1 16 34 47
|
syl3anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D B ) = ( B D A ) ) |
49 |
16 34
|
jca |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A e. X /\ B e. X ) ) |
50 |
|
metidv |
|- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X ) ) -> ( A ( ~Met ` D ) B <-> ( A D B ) = 0 ) ) |
51 |
50
|
biimpa |
|- ( ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X ) ) /\ A ( ~Met ` D ) B ) -> ( A D B ) = 0 ) |
52 |
1 49 13 51
|
syl21anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D B ) = 0 ) |
53 |
48 52
|
eqtr3d |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D A ) = 0 ) |
54 |
53
|
oveq1d |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( B D A ) +e ( B D E ) ) = ( 0 +e ( B D E ) ) ) |
55 |
|
xaddid2 |
|- ( ( B D E ) e. RR* -> ( 0 +e ( B D E ) ) = ( B D E ) ) |
56 |
36 55
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( 0 +e ( B D E ) ) = ( B D E ) ) |
57 |
54 56
|
eqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( B D A ) +e ( B D E ) ) = ( B D E ) ) |
58 |
46 57
|
breqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D E ) <_ ( B D E ) ) |
59 |
|
psmettri2 |
|- ( ( D e. ( PsMet ` X ) /\ ( F e. X /\ B e. X /\ E e. X ) ) -> ( B D E ) <_ ( ( F D B ) +e ( F D E ) ) ) |
60 |
1 39 34 20 59
|
syl13anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D E ) <_ ( ( F D B ) +e ( F D E ) ) ) |
61 |
|
psmetsym |
|- ( ( D e. ( PsMet ` X ) /\ F e. X /\ E e. X ) -> ( F D E ) = ( E D F ) ) |
62 |
1 39 20 61
|
syl3anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( F D E ) = ( E D F ) ) |
63 |
20 39
|
jca |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( E e. X /\ F e. X ) ) |
64 |
|
metidv |
|- ( ( D e. ( PsMet ` X ) /\ ( E e. X /\ F e. X ) ) -> ( E ( ~Met ` D ) F <-> ( E D F ) = 0 ) ) |
65 |
64
|
biimpa |
|- ( ( ( D e. ( PsMet ` X ) /\ ( E e. X /\ F e. X ) ) /\ E ( ~Met ` D ) F ) -> ( E D F ) = 0 ) |
66 |
1 63 17 65
|
syl21anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( E D F ) = 0 ) |
67 |
62 66
|
eqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( F D E ) = 0 ) |
68 |
67
|
oveq2d |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( F D B ) +e ( F D E ) ) = ( ( F D B ) +e 0 ) ) |
69 |
|
xaddid1 |
|- ( ( F D B ) e. RR* -> ( ( F D B ) +e 0 ) = ( F D B ) ) |
70 |
43 69
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( F D B ) +e 0 ) = ( F D B ) ) |
71 |
68 70 41
|
3eqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( F D B ) +e ( F D E ) ) = ( B D F ) ) |
72 |
60 71
|
breqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D E ) <_ ( B D F ) ) |
73 |
26 36 44 58 72
|
xrletrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D E ) <_ ( B D F ) ) |
74 |
23
|
fovrnda |
|- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ F e. X ) ) -> ( A D F ) e. RR* ) |
75 |
1 16 39 74
|
syl12anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D F ) e. RR* ) |
76 |
|
psmettri2 |
|- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ F e. X ) ) -> ( B D F ) <_ ( ( A D B ) +e ( A D F ) ) ) |
77 |
1 16 34 39 76
|
syl13anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D F ) <_ ( ( A D B ) +e ( A D F ) ) ) |
78 |
52
|
oveq1d |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( A D B ) +e ( A D F ) ) = ( 0 +e ( A D F ) ) ) |
79 |
|
xaddid2 |
|- ( ( A D F ) e. RR* -> ( 0 +e ( A D F ) ) = ( A D F ) ) |
80 |
75 79
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( 0 +e ( A D F ) ) = ( A D F ) ) |
81 |
78 80
|
eqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( A D B ) +e ( A D F ) ) = ( A D F ) ) |
82 |
77 81
|
breqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D F ) <_ ( A D F ) ) |
83 |
|
psmettri2 |
|- ( ( D e. ( PsMet ` X ) /\ ( E e. X /\ A e. X /\ F e. X ) ) -> ( A D F ) <_ ( ( E D A ) +e ( E D F ) ) ) |
84 |
1 20 16 39 83
|
syl13anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D F ) <_ ( ( E D A ) +e ( E D F ) ) ) |
85 |
|
xaddid1 |
|- ( ( E D A ) e. RR* -> ( ( E D A ) +e 0 ) = ( E D A ) ) |
86 |
25 85
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( E D A ) +e 0 ) = ( E D A ) ) |
87 |
66
|
oveq2d |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( E D A ) +e ( E D F ) ) = ( ( E D A ) +e 0 ) ) |
88 |
86 87 22
|
3eqtr4d |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( E D A ) +e ( E D F ) ) = ( A D E ) ) |
89 |
84 88
|
breqtrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D F ) <_ ( A D E ) ) |
90 |
44 75 26 82 89
|
xrletrd |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( B D F ) <_ ( A D E ) ) |
91 |
|
xrletri3 |
|- ( ( ( A D E ) e. RR* /\ ( B D F ) e. RR* ) -> ( ( A D E ) = ( B D F ) <-> ( ( A D E ) <_ ( B D F ) /\ ( B D F ) <_ ( A D E ) ) ) ) |
92 |
26 44 91
|
syl2anc |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( ( A D E ) = ( B D F ) <-> ( ( A D E ) <_ ( B D F ) /\ ( B D F ) <_ ( A D E ) ) ) ) |
93 |
73 90 92
|
mpbir2and |
|- ( ( D e. ( PsMet ` X ) /\ ( A ( ~Met ` D ) B /\ E ( ~Met ` D ) F ) ) -> ( A D E ) = ( B D F ) ) |