| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l |  |-  L = ( # ` A ) | 
						
							| 2 |  | simpll |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> ( A e. Word V /\ B e. Word V ) ) | 
						
							| 3 |  | simplrl |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> M e. ( 0 ... N ) ) | 
						
							| 4 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 5 |  | elfznn0 |  |-  ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> N e. NN0 ) | 
						
							| 6 | 5 | adantr |  |-  ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) -> N e. NN0 ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> N e. NN0 ) | 
						
							| 8 |  | simplr |  |-  ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> ( # ` A ) e. NN0 ) | 
						
							| 9 | 1 | breq2i |  |-  ( N <_ L <-> N <_ ( # ` A ) ) | 
						
							| 10 | 9 | biimpi |  |-  ( N <_ L -> N <_ ( # ` A ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> N <_ ( # ` A ) ) | 
						
							| 12 |  | elfz2nn0 |  |-  ( N e. ( 0 ... ( # ` A ) ) <-> ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) ) | 
						
							| 13 | 7 8 11 12 | syl3anbrc |  |-  ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> N e. ( 0 ... ( # ` A ) ) ) | 
						
							| 14 | 13 | exp31 |  |-  ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` A ) e. NN0 -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) | 
						
							| 16 | 4 15 | syl5com |  |-  ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> N e. ( 0 ... ( # ` A ) ) ) | 
						
							| 20 | 3 19 | jca |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) | 
						
							| 21 |  | swrdccatin1 |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) | 
						
							| 22 | 2 20 21 | sylc |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) | 
						
							| 23 |  | simp1l |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> ( A e. Word V /\ B e. Word V ) ) | 
						
							| 24 | 1 | eleq1i |  |-  ( L e. NN0 <-> ( # ` A ) e. NN0 ) | 
						
							| 25 |  | elfz2nn0 |  |-  ( M e. ( 0 ... N ) <-> ( M e. NN0 /\ N e. NN0 /\ M <_ N ) ) | 
						
							| 26 |  | nn0z |  |-  ( L e. NN0 -> L e. ZZ ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> L e. ZZ ) | 
						
							| 28 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 29 | 28 | 3ad2ant2 |  |-  ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> N e. ZZ ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> N e. ZZ ) | 
						
							| 31 |  | nn0z |  |-  ( M e. NN0 -> M e. ZZ ) | 
						
							| 32 | 31 | 3ad2ant1 |  |-  ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> M e. ZZ ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> M e. ZZ ) | 
						
							| 34 | 27 30 33 | 3jca |  |-  ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) /\ L <_ M ) -> ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) ) | 
						
							| 36 |  | simpl3 |  |-  ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> M <_ N ) | 
						
							| 37 | 36 | anim1ci |  |-  ( ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) /\ L <_ M ) -> ( L <_ M /\ M <_ N ) ) | 
						
							| 38 |  | elfz2 |  |-  ( M e. ( L ... N ) <-> ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) ) | 
						
							| 39 | 35 37 38 | sylanbrc |  |-  ( ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) /\ L <_ M ) -> M e. ( L ... N ) ) | 
						
							| 40 | 39 | exp31 |  |-  ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( L e. NN0 -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 41 | 25 40 | sylbi |  |-  ( M e. ( 0 ... N ) -> ( L e. NN0 -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L e. NN0 -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 43 | 42 | com12 |  |-  ( L e. NN0 -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 44 | 24 43 | sylbir |  |-  ( ( # ` A ) e. NN0 -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 45 | 4 44 | syl |  |-  ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) | 
						
							| 48 | 47 | a1d |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( L <_ M -> M e. ( L ... N ) ) ) ) | 
						
							| 49 | 48 | 3imp |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> M e. ( L ... N ) ) | 
						
							| 50 |  | elfz2nn0 |  |-  ( N e. ( 0 ... ( L + ( # ` B ) ) ) <-> ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) | 
						
							| 51 |  | nn0z |  |-  ( ( # ` A ) e. NN0 -> ( # ` A ) e. ZZ ) | 
						
							| 52 | 1 51 | eqeltrid |  |-  ( ( # ` A ) e. NN0 -> L e. ZZ ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( # ` A ) e. NN0 /\ -. N <_ L ) -> L e. ZZ ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> L e. ZZ ) | 
						
							| 55 |  | nn0z |  |-  ( ( L + ( # ` B ) ) e. NN0 -> ( L + ( # ` B ) ) e. ZZ ) | 
						
							| 56 | 55 | 3ad2ant2 |  |-  ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( L + ( # ` B ) ) e. ZZ ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> ( L + ( # ` B ) ) e. ZZ ) | 
						
							| 58 | 28 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> N e. ZZ ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> N e. ZZ ) | 
						
							| 60 | 54 57 59 | 3jca |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 61 | 1 | eqcomi |  |-  ( # ` A ) = L | 
						
							| 62 | 61 | eleq1i |  |-  ( ( # ` A ) e. NN0 <-> L e. NN0 ) | 
						
							| 63 |  | nn0re |  |-  ( L e. NN0 -> L e. RR ) | 
						
							| 64 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 65 |  | ltnle |  |-  ( ( L e. RR /\ N e. RR ) -> ( L < N <-> -. N <_ L ) ) | 
						
							| 66 | 63 64 65 | syl2anr |  |-  ( ( N e. NN0 /\ L e. NN0 ) -> ( L < N <-> -. N <_ L ) ) | 
						
							| 67 | 66 | bicomd |  |-  ( ( N e. NN0 /\ L e. NN0 ) -> ( -. N <_ L <-> L < N ) ) | 
						
							| 68 |  | ltle |  |-  ( ( L e. RR /\ N e. RR ) -> ( L < N -> L <_ N ) ) | 
						
							| 69 | 63 64 68 | syl2anr |  |-  ( ( N e. NN0 /\ L e. NN0 ) -> ( L < N -> L <_ N ) ) | 
						
							| 70 | 67 69 | sylbid |  |-  ( ( N e. NN0 /\ L e. NN0 ) -> ( -. N <_ L -> L <_ N ) ) | 
						
							| 71 | 70 | ex |  |-  ( N e. NN0 -> ( L e. NN0 -> ( -. N <_ L -> L <_ N ) ) ) | 
						
							| 72 | 62 71 | biimtrid |  |-  ( N e. NN0 -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> L <_ N ) ) ) | 
						
							| 73 | 72 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> L <_ N ) ) ) | 
						
							| 74 | 73 | imp32 |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> L <_ N ) | 
						
							| 75 |  | simpl3 |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> N <_ ( L + ( # ` B ) ) ) | 
						
							| 76 | 74 75 | jca |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> ( L <_ N /\ N <_ ( L + ( # ` B ) ) ) ) | 
						
							| 77 |  | elfz2 |  |-  ( N e. ( L ... ( L + ( # ` B ) ) ) <-> ( ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) /\ ( L <_ N /\ N <_ ( L + ( # ` B ) ) ) ) ) | 
						
							| 78 | 60 76 77 | sylanbrc |  |-  ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) | 
						
							| 79 | 78 | exp32 |  |-  ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 80 | 50 79 | sylbi |  |-  ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 81 | 80 | adantl |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 82 | 4 81 | syl5com |  |-  ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 84 | 83 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 85 | 84 | a1dd |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( L <_ M -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 86 | 85 | 3imp |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) | 
						
							| 87 | 49 86 | jca |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 88 | 1 | swrdccatin2 |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) ) | 
						
							| 89 | 23 87 88 | sylc |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) | 
						
							| 90 |  | simp1l |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> ( A e. Word V /\ B e. Word V ) ) | 
						
							| 91 |  | nn0re |  |-  ( M e. NN0 -> M e. RR ) | 
						
							| 92 | 91 | adantr |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> M e. RR ) | 
						
							| 93 |  | ltnle |  |-  ( ( M e. RR /\ L e. RR ) -> ( M < L <-> -. L <_ M ) ) | 
						
							| 94 | 92 63 93 | syl2anr |  |-  ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < L <-> -. L <_ M ) ) | 
						
							| 95 | 94 | bicomd |  |-  ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( -. L <_ M <-> M < L ) ) | 
						
							| 96 |  | simpll |  |-  ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> M e. NN0 ) | 
						
							| 97 |  | simplr |  |-  ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> L e. NN0 ) | 
						
							| 98 |  | ltle |  |-  ( ( M e. RR /\ L e. RR ) -> ( M < L -> M <_ L ) ) | 
						
							| 99 | 91 63 98 | syl2an |  |-  ( ( M e. NN0 /\ L e. NN0 ) -> ( M < L -> M <_ L ) ) | 
						
							| 100 | 99 | imp |  |-  ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> M <_ L ) | 
						
							| 101 |  | elfz2nn0 |  |-  ( M e. ( 0 ... L ) <-> ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) | 
						
							| 102 | 96 97 100 101 | syl3anbrc |  |-  ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> M e. ( 0 ... L ) ) | 
						
							| 103 | 102 | exp31 |  |-  ( M e. NN0 -> ( L e. NN0 -> ( M < L -> M e. ( 0 ... L ) ) ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( L e. NN0 -> ( M < L -> M e. ( 0 ... L ) ) ) ) | 
						
							| 105 | 104 | impcom |  |-  ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < L -> M e. ( 0 ... L ) ) ) | 
						
							| 106 | 95 105 | sylbid |  |-  ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) | 
						
							| 107 | 106 | expcom |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( L e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 108 | 107 | 3adant3 |  |-  ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( L e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 109 | 25 108 | sylbi |  |-  ( M e. ( 0 ... N ) -> ( L e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 110 | 62 109 | biimtrid |  |-  ( M e. ( 0 ... N ) -> ( ( # ` A ) e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 111 | 110 | adantr |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 112 | 4 111 | syl5com |  |-  ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 113 | 112 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 114 | 113 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) | 
						
							| 115 | 114 | a1d |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) | 
						
							| 116 | 115 | 3imp |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> M e. ( 0 ... L ) ) | 
						
							| 117 | 64 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> N e. RR ) | 
						
							| 118 | 65 | bicomd |  |-  ( ( L e. RR /\ N e. RR ) -> ( -. N <_ L <-> L < N ) ) | 
						
							| 119 | 63 117 118 | syl2an |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( -. N <_ L <-> L < N ) ) | 
						
							| 120 | 26 | adantr |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> L e. ZZ ) | 
						
							| 121 | 56 | adantl |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L + ( # ` B ) ) e. ZZ ) | 
						
							| 122 | 58 | adantl |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> N e. ZZ ) | 
						
							| 123 | 120 121 122 | 3jca |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 125 | 63 117 68 | syl2an |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L < N -> L <_ N ) ) | 
						
							| 126 | 125 | imp |  |-  ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> L <_ N ) | 
						
							| 127 |  | simplr3 |  |-  ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> N <_ ( L + ( # ` B ) ) ) | 
						
							| 128 | 126 127 | jca |  |-  ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> ( L <_ N /\ N <_ ( L + ( # ` B ) ) ) ) | 
						
							| 129 | 124 128 77 | sylanbrc |  |-  ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) | 
						
							| 130 | 129 | ex |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L < N -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 131 | 119 130 | sylbid |  |-  ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 132 | 131 | ex |  |-  ( L e. NN0 -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 133 | 62 132 | sylbi |  |-  ( ( # ` A ) e. NN0 -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 134 | 4 133 | syl |  |-  ( A e. Word V -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 135 | 134 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 136 | 135 | com12 |  |-  ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 137 | 50 136 | sylbi |  |-  ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 138 | 137 | adantl |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 139 | 138 | impcom |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 140 | 139 | a1dd |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( -. L <_ M -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) | 
						
							| 141 | 140 | 3imp |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) | 
						
							| 142 | 116 141 | jca |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 143 | 1 | pfxccatin12 |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) ) | 
						
							| 144 | 90 142 143 | sylc |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) | 
						
							| 145 | 22 89 144 | 2if2 |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = if ( N <_ L , ( A substr <. M , N >. ) , if ( L <_ M , ( B substr <. ( M - L ) , ( N - L ) >. ) , ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) ) ) | 
						
							| 146 | 145 | ex |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = if ( N <_ L , ( A substr <. M , N >. ) , if ( L <_ M , ( B substr <. ( M - L ) , ( N - L ) >. ) , ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) ) ) ) |