| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l |  |-  L = ( # ` A ) | 
						
							| 2 |  | oveq1 |  |-  ( L = ( # ` A ) -> ( L ... N ) = ( ( # ` A ) ... N ) ) | 
						
							| 3 | 2 | eleq2d |  |-  ( L = ( # ` A ) -> ( M e. ( L ... N ) <-> M e. ( ( # ` A ) ... N ) ) ) | 
						
							| 4 |  | id |  |-  ( L = ( # ` A ) -> L = ( # ` A ) ) | 
						
							| 5 |  | oveq1 |  |-  ( L = ( # ` A ) -> ( L + ( # ` B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 6 | 4 5 | oveq12d |  |-  ( L = ( # ` A ) -> ( L ... ( L + ( # ` B ) ) ) = ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( L = ( # ` A ) -> ( N e. ( L ... ( L + ( # ` B ) ) ) <-> N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 8 | 3 7 | anbi12d |  |-  ( L = ( # ` A ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) <-> ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) | 
						
							| 9 | 1 8 | ax-mp |  |-  ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) <-> ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 10 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 11 |  | elnn0uz |  |-  ( ( # ` A ) e. NN0 <-> ( # ` A ) e. ( ZZ>= ` 0 ) ) | 
						
							| 12 |  | fzss1 |  |-  ( ( # ` A ) e. ( ZZ>= ` 0 ) -> ( ( # ` A ) ... N ) C_ ( 0 ... N ) ) | 
						
							| 13 | 11 12 | sylbi |  |-  ( ( # ` A ) e. NN0 -> ( ( # ` A ) ... N ) C_ ( 0 ... N ) ) | 
						
							| 14 | 13 | sseld |  |-  ( ( # ` A ) e. NN0 -> ( M e. ( ( # ` A ) ... N ) -> M e. ( 0 ... N ) ) ) | 
						
							| 15 |  | fzss1 |  |-  ( ( # ` A ) e. ( ZZ>= ` 0 ) -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 16 | 11 15 | sylbi |  |-  ( ( # ` A ) e. NN0 -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 17 | 16 | sseld |  |-  ( ( # ` A ) e. NN0 -> ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 18 | 14 17 | anim12d |  |-  ( ( # ` A ) e. NN0 -> ( ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) | 
						
							| 19 | 10 18 | syl |  |-  ( A e. Word V -> ( ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) | 
						
							| 21 | 9 20 | biimtrid |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 23 |  | swrdccatfn |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) | 
						
							| 24 | 22 23 | syldan |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) | 
						
							| 25 |  | fzmmmeqm |  |-  ( M e. ( L ... N ) -> ( ( N - L ) - ( M - L ) ) = ( N - M ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( M e. ( L ... N ) -> ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) = ( 0 ..^ ( N - M ) ) ) | 
						
							| 27 | 26 | fneq2d |  |-  ( M e. ( L ... N ) -> ( ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) ) | 
						
							| 28 | 27 | ad2antrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) ) | 
						
							| 29 | 24 28 | mpbird |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) | 
						
							| 30 |  | simplr |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> B e. Word V ) | 
						
							| 31 |  | elfzmlbm |  |-  ( M e. ( L ... N ) -> ( M - L ) e. ( 0 ... ( N - L ) ) ) | 
						
							| 32 | 31 | ad2antrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( M - L ) e. ( 0 ... ( N - L ) ) ) | 
						
							| 33 |  | lencl |  |-  ( B e. Word V -> ( # ` B ) e. NN0 ) | 
						
							| 34 | 33 | nn0zd |  |-  ( B e. Word V -> ( # ` B ) e. ZZ ) | 
						
							| 35 | 34 | adantl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( # ` B ) e. ZZ ) | 
						
							| 36 |  | elfzmlbp |  |-  ( ( ( # ` B ) e. ZZ /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) | 
						
							| 37 | 35 36 | sylan |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) | 
						
							| 38 | 37 | adantrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) | 
						
							| 39 |  | swrdvalfn |  |-  ( ( B e. Word V /\ ( M - L ) e. ( 0 ... ( N - L ) ) /\ ( N - L ) e. ( 0 ... ( # ` B ) ) ) -> ( B substr <. ( M - L ) , ( N - L ) >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) | 
						
							| 40 | 30 32 38 39 | syl3anc |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( B substr <. ( M - L ) , ( N - L ) >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) | 
						
							| 41 |  | simpll |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( A e. Word V /\ B e. Word V ) ) | 
						
							| 42 |  | elfzelz |  |-  ( M e. ( L ... N ) -> M e. ZZ ) | 
						
							| 43 |  | zaddcl |  |-  ( ( k e. ZZ /\ M e. ZZ ) -> ( k + M ) e. ZZ ) | 
						
							| 44 | 43 | expcom |  |-  ( M e. ZZ -> ( k e. ZZ -> ( k + M ) e. ZZ ) ) | 
						
							| 45 | 42 44 | syl |  |-  ( M e. ( L ... N ) -> ( k e. ZZ -> ( k + M ) e. ZZ ) ) | 
						
							| 46 | 45 | ad2antrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. ZZ -> ( k + M ) e. ZZ ) ) | 
						
							| 47 |  | elfzoelz |  |-  ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) -> k e. ZZ ) | 
						
							| 48 | 46 47 | impel |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( k + M ) e. ZZ ) | 
						
							| 49 |  | df-3an |  |-  ( ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ZZ ) <-> ( ( A e. Word V /\ B e. Word V ) /\ ( k + M ) e. ZZ ) ) | 
						
							| 50 | 41 48 49 | sylanbrc |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ZZ ) ) | 
						
							| 51 |  | ccatsymb |  |-  ( ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ZZ ) -> ( ( A ++ B ) ` ( k + M ) ) = if ( ( k + M ) < ( # ` A ) , ( A ` ( k + M ) ) , ( B ` ( ( k + M ) - ( # ` A ) ) ) ) ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = if ( ( k + M ) < ( # ` A ) , ( A ` ( k + M ) ) , ( B ` ( ( k + M ) - ( # ` A ) ) ) ) ) | 
						
							| 53 |  | elfz2 |  |-  ( M e. ( L ... N ) <-> ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) ) | 
						
							| 54 |  | zre |  |-  ( L e. ZZ -> L e. RR ) | 
						
							| 55 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 56 | 54 55 | anim12i |  |-  ( ( L e. ZZ /\ M e. ZZ ) -> ( L e. RR /\ M e. RR ) ) | 
						
							| 57 |  | elnn0z |  |-  ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) | 
						
							| 58 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 59 |  | 0re |  |-  0 e. RR | 
						
							| 60 | 59 | jctl |  |-  ( L e. RR -> ( 0 e. RR /\ L e. RR ) ) | 
						
							| 61 | 60 | ad2antrl |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( 0 e. RR /\ L e. RR ) ) | 
						
							| 62 |  | id |  |-  ( ( k e. RR /\ M e. RR ) -> ( k e. RR /\ M e. RR ) ) | 
						
							| 63 | 62 | adantrl |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( k e. RR /\ M e. RR ) ) | 
						
							| 64 |  | le2add |  |-  ( ( ( 0 e. RR /\ L e. RR ) /\ ( k e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> ( 0 + L ) <_ ( k + M ) ) ) | 
						
							| 65 | 61 63 64 | syl2anc |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> ( 0 + L ) <_ ( k + M ) ) ) | 
						
							| 66 |  | recn |  |-  ( L e. RR -> L e. CC ) | 
						
							| 67 | 66 | addlidd |  |-  ( L e. RR -> ( 0 + L ) = L ) | 
						
							| 68 | 67 | ad2antrl |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( 0 + L ) = L ) | 
						
							| 69 | 68 | breq1d |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 + L ) <_ ( k + M ) <-> L <_ ( k + M ) ) ) | 
						
							| 70 | 65 69 | sylibd |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> L <_ ( k + M ) ) ) | 
						
							| 71 |  | simprl |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> L e. RR ) | 
						
							| 72 |  | readdcl |  |-  ( ( k e. RR /\ M e. RR ) -> ( k + M ) e. RR ) | 
						
							| 73 | 72 | adantrl |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( k + M ) e. RR ) | 
						
							| 74 | 71 73 | lenltd |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( L <_ ( k + M ) <-> -. ( k + M ) < L ) ) | 
						
							| 75 | 70 74 | sylibd |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> -. ( k + M ) < L ) ) | 
						
							| 76 | 75 | expd |  |-  ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( 0 <_ k -> ( L <_ M -> -. ( k + M ) < L ) ) ) | 
						
							| 77 | 76 | com12 |  |-  ( 0 <_ k -> ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) | 
						
							| 78 | 77 | expd |  |-  ( 0 <_ k -> ( k e. RR -> ( ( L e. RR /\ M e. RR ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) ) | 
						
							| 79 | 58 78 | mpan9 |  |-  ( ( k e. ZZ /\ 0 <_ k ) -> ( ( L e. RR /\ M e. RR ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) | 
						
							| 80 | 57 79 | sylbi |  |-  ( k e. NN0 -> ( ( L e. RR /\ M e. RR ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) | 
						
							| 81 | 56 80 | mpan9 |  |-  ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. NN0 ) -> ( L <_ M -> -. ( k + M ) < L ) ) | 
						
							| 82 | 1 | breq2i |  |-  ( ( k + M ) < L <-> ( k + M ) < ( # ` A ) ) | 
						
							| 83 | 82 | notbii |  |-  ( -. ( k + M ) < L <-> -. ( k + M ) < ( # ` A ) ) | 
						
							| 84 | 81 83 | imbitrdi |  |-  ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. NN0 ) -> ( L <_ M -> -. ( k + M ) < ( # ` A ) ) ) | 
						
							| 85 | 84 | ex |  |-  ( ( L e. ZZ /\ M e. ZZ ) -> ( k e. NN0 -> ( L <_ M -> -. ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 86 | 85 | com23 |  |-  ( ( L e. ZZ /\ M e. ZZ ) -> ( L <_ M -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 87 | 86 | 3adant2 |  |-  ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( L <_ M -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 88 | 87 | imp |  |-  ( ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ L <_ M ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) | 
						
							| 89 | 88 | adantrr |  |-  ( ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) | 
						
							| 90 | 53 89 | sylbi |  |-  ( M e. ( L ... N ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) | 
						
							| 91 | 90 | ad2antrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) | 
						
							| 92 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) -> k e. NN0 ) | 
						
							| 93 | 91 92 | impel |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> -. ( k + M ) < ( # ` A ) ) | 
						
							| 94 | 93 | iffalsed |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> if ( ( k + M ) < ( # ` A ) , ( A ` ( k + M ) ) , ( B ` ( ( k + M ) - ( # ` A ) ) ) ) = ( B ` ( ( k + M ) - ( # ` A ) ) ) ) | 
						
							| 95 |  | zcn |  |-  ( k e. ZZ -> k e. CC ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> k e. CC ) | 
						
							| 97 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 98 | 97 | ad2antlr |  |-  ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> M e. CC ) | 
						
							| 99 |  | zcn |  |-  ( L e. ZZ -> L e. CC ) | 
						
							| 100 | 99 | ad2antrr |  |-  ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> L e. CC ) | 
						
							| 101 | 96 98 100 | addsubassd |  |-  ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> ( ( k + M ) - L ) = ( k + ( M - L ) ) ) | 
						
							| 102 |  | oveq2 |  |-  ( L = ( # ` A ) -> ( ( k + M ) - L ) = ( ( k + M ) - ( # ` A ) ) ) | 
						
							| 103 | 102 | eqeq1d |  |-  ( L = ( # ` A ) -> ( ( ( k + M ) - L ) = ( k + ( M - L ) ) <-> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) | 
						
							| 104 | 101 103 | imbitrid |  |-  ( L = ( # ` A ) -> ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) | 
						
							| 105 | 1 104 | ax-mp |  |-  ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) | 
						
							| 106 | 105 | ex |  |-  ( ( L e. ZZ /\ M e. ZZ ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) | 
						
							| 107 | 106 | 3adant2 |  |-  ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) | 
						
							| 109 | 53 108 | sylbi |  |-  ( M e. ( L ... N ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) | 
						
							| 110 | 109 | ad2antrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) | 
						
							| 111 | 110 47 | impel |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) | 
						
							| 112 | 111 | fveq2d |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( B ` ( ( k + M ) - ( # ` A ) ) ) = ( B ` ( k + ( M - L ) ) ) ) | 
						
							| 113 | 52 94 112 | 3eqtrd |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( B ` ( k + ( M - L ) ) ) ) | 
						
							| 114 |  | ccatcl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( A ++ B ) e. Word V ) | 
						
							| 116 | 11 | biimpi |  |-  ( ( # ` A ) e. NN0 -> ( # ` A ) e. ( ZZ>= ` 0 ) ) | 
						
							| 117 | 1 116 | eqeltrid |  |-  ( ( # ` A ) e. NN0 -> L e. ( ZZ>= ` 0 ) ) | 
						
							| 118 |  | fzss1 |  |-  ( L e. ( ZZ>= ` 0 ) -> ( L ... N ) C_ ( 0 ... N ) ) | 
						
							| 119 | 10 117 118 | 3syl |  |-  ( A e. Word V -> ( L ... N ) C_ ( 0 ... N ) ) | 
						
							| 120 | 119 | sselda |  |-  ( ( A e. Word V /\ M e. ( L ... N ) ) -> M e. ( 0 ... N ) ) | 
						
							| 121 | 120 | ad2ant2r |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> M e. ( 0 ... N ) ) | 
						
							| 122 | 1 7 | ax-mp |  |-  ( N e. ( L ... ( L + ( # ` B ) ) ) <-> N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 123 | 10 116 15 | 3syl |  |-  ( A e. Word V -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 124 | 123 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 125 | 124 | sseld |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 126 | 125 | impcom |  |-  ( ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) /\ ( A e. Word V /\ B e. Word V ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 127 |  | ccatlen |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 128 | 127 | oveq2d |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( 0 ... ( # ` ( A ++ B ) ) ) = ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 129 | 128 | eleq2d |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 130 | 129 | adantl |  |-  ( ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) /\ ( A e. Word V /\ B e. Word V ) ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 131 | 126 130 | mpbird |  |-  ( ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) /\ ( A e. Word V /\ B e. Word V ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) | 
						
							| 132 | 131 | ex |  |-  ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) | 
						
							| 133 | 122 132 | sylbi |  |-  ( N e. ( L ... ( L + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) | 
						
							| 134 | 133 | impcom |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) | 
						
							| 135 | 134 | adantrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) | 
						
							| 136 | 115 121 135 | 3jca |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) | 
						
							| 137 | 26 | eleq2d |  |-  ( M e. ( L ... N ) -> ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> k e. ( 0 ..^ ( N - M ) ) ) ) | 
						
							| 138 | 137 | ad2antrl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> k e. ( 0 ..^ ( N - M ) ) ) ) | 
						
							| 139 | 138 | biimpa |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> k e. ( 0 ..^ ( N - M ) ) ) | 
						
							| 140 |  | swrdfv |  |-  ( ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) | 
						
							| 141 | 136 139 140 | syl2an2r |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) | 
						
							| 142 | 34 36 | sylan |  |-  ( ( B e. Word V /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) | 
						
							| 143 | 142 | ad2ant2l |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) | 
						
							| 144 | 30 32 143 | 3jca |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( B e. Word V /\ ( M - L ) e. ( 0 ... ( N - L ) ) /\ ( N - L ) e. ( 0 ... ( # ` B ) ) ) ) | 
						
							| 145 |  | swrdfv |  |-  ( ( ( B e. Word V /\ ( M - L ) e. ( 0 ... ( N - L ) ) /\ ( N - L ) e. ( 0 ... ( # ` B ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( B substr <. ( M - L ) , ( N - L ) >. ) ` k ) = ( B ` ( k + ( M - L ) ) ) ) | 
						
							| 146 | 144 145 | sylan |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( B substr <. ( M - L ) , ( N - L ) >. ) ` k ) = ( B ` ( k + ( M - L ) ) ) ) | 
						
							| 147 | 113 141 146 | 3eqtr4d |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( B substr <. ( M - L ) , ( N - L ) >. ) ` k ) ) | 
						
							| 148 | 29 40 147 | eqfnfvd |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) | 
						
							| 149 | 148 | ex |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) ) |