| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnbgreunbgr.g |
|- G = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnbgreunbgr.v |
|- V = ( Vtx ` G ) |
| 3 |
|
pgnbgreunbgr.e |
|- E = ( Edg ` G ) |
| 4 |
|
pgnbgreunbgr.n |
|- N = ( G NeighbVtx X ) |
| 5 |
2
|
nbgrcl |
|- ( K e. ( G NeighbVtx X ) -> X e. V ) |
| 6 |
5 4
|
eleq2s |
|- ( K e. N -> X e. V ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( K e. N /\ L e. N /\ K =/= L ) -> X e. V ) |
| 8 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 9 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 10 |
|
eqid |
|- ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 11 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 12 |
10 11 1 2
|
gpgvtxel |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. ( 0 ..^ 5 ) X = <. x , y >. ) ) |
| 13 |
8 9 12
|
mp2an |
|- ( X e. V <-> E. x e. { 0 , 1 } E. y e. ( 0 ..^ 5 ) X = <. x , y >. ) |
| 14 |
13
|
biimpi |
|- ( X e. V -> E. x e. { 0 , 1 } E. y e. ( 0 ..^ 5 ) X = <. x , y >. ) |
| 15 |
14
|
adantl |
|- ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) -> E. x e. { 0 , 1 } E. y e. ( 0 ..^ 5 ) X = <. x , y >. ) |
| 16 |
|
vex |
|- x e. _V |
| 17 |
16
|
elpr |
|- ( x e. { 0 , 1 } <-> ( x = 0 \/ x = 1 ) ) |
| 18 |
|
opeq1 |
|- ( x = 0 -> <. x , y >. = <. 0 , y >. ) |
| 19 |
18
|
eqeq2d |
|- ( x = 0 -> ( X = <. x , y >. <-> X = <. 0 , y >. ) ) |
| 20 |
19
|
adantr |
|- ( ( x = 0 /\ ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( X = <. x , y >. <-> X = <. 0 , y >. ) ) |
| 21 |
8 9
|
pm3.2i |
|- ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 22 |
2
|
eleq2i |
|- ( X e. V <-> X e. ( Vtx ` G ) ) |
| 23 |
22
|
biimpi |
|- ( X e. V -> X e. ( Vtx ` G ) ) |
| 24 |
|
c0ex |
|- 0 e. _V |
| 25 |
|
vex |
|- y e. _V |
| 26 |
24 25
|
op1std |
|- ( X = <. 0 , y >. -> ( 1st ` X ) = 0 ) |
| 27 |
23 26
|
anim12i |
|- ( ( X e. V /\ X = <. 0 , y >. ) -> ( X e. ( Vtx ` G ) /\ ( 1st ` X ) = 0 ) ) |
| 28 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 29 |
11 1 28 4
|
gpgnbgrvtx0 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( X e. ( Vtx ` G ) /\ ( 1st ` X ) = 0 ) ) -> N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) |
| 30 |
21 27 29
|
sylancr |
|- ( ( X e. V /\ X = <. 0 , y >. ) -> N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) |
| 31 |
|
eleq2 |
|- ( N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } -> ( K e. N <-> K e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) ) |
| 32 |
|
eleq2 |
|- ( N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } -> ( L e. N <-> L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) ) |
| 33 |
31 32
|
anbi12d |
|- ( N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } -> ( ( K e. N /\ L e. N ) <-> ( K e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } /\ L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) ) ) |
| 34 |
33
|
adantl |
|- ( ( ( X e. V /\ X = <. 0 , y >. ) /\ N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) -> ( ( K e. N /\ L e. N ) <-> ( K e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } /\ L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) ) ) |
| 35 |
|
eltpi |
|- ( K e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } -> ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) ) |
| 36 |
|
eltpi |
|- ( L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } -> ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) ) |
| 37 |
1 2 3 4
|
pgnbgreunbgrlem1 |
|- ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) -> ( ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) -> ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 38 |
36 37
|
syl |
|- ( L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } -> ( ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) -> ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 39 |
35 38
|
mpan9 |
|- ( ( K e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } /\ L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) -> ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 40 |
39
|
com12 |
|- ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( K e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } /\ L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ( X e. V /\ X = <. 0 , y >. ) /\ N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) -> ( ( K e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } /\ L e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 42 |
34 41
|
sylbid |
|- ( ( ( X e. V /\ X = <. 0 , y >. ) /\ N = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. } ) -> ( ( K e. N /\ L e. N ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 43 |
30 42
|
mpdan |
|- ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( K e. N /\ L e. N ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 44 |
43
|
com12 |
|- ( ( K e. N /\ L e. N ) -> ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 45 |
44
|
expd |
|- ( ( K e. N /\ L e. N ) -> ( X e. V -> ( X = <. 0 , y >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 46 |
45
|
com23 |
|- ( ( K e. N /\ L e. N ) -> ( X = <. 0 , y >. -> ( X e. V -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 47 |
46
|
com24 |
|- ( ( K e. N /\ L e. N ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( X e. V -> ( X = <. 0 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 48 |
47
|
expd |
|- ( ( K e. N /\ L e. N ) -> ( K =/= L -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( X e. V -> ( X = <. 0 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) ) |
| 49 |
48
|
3impia |
|- ( ( K e. N /\ L e. N /\ K =/= L ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( X e. V -> ( X = <. 0 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 50 |
49
|
expdimp |
|- ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) -> ( y e. ( 0 ..^ 5 ) -> ( X e. V -> ( X = <. 0 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 51 |
50
|
com23 |
|- ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) -> ( X e. V -> ( y e. ( 0 ..^ 5 ) -> ( X = <. 0 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 52 |
51
|
imp31 |
|- ( ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) -> ( X = <. 0 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) |
| 53 |
52
|
adantl |
|- ( ( x = 0 /\ ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( X = <. 0 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) |
| 54 |
20 53
|
sylbid |
|- ( ( x = 0 /\ ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) |
| 55 |
54
|
ex |
|- ( x = 0 -> ( ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 56 |
|
1ex |
|- 1 e. _V |
| 57 |
56 25
|
op1std |
|- ( X = <. 1 , y >. -> ( 1st ` X ) = 1 ) |
| 58 |
57
|
anim1ci |
|- ( ( X = <. 1 , y >. /\ X e. V ) -> ( X e. V /\ ( 1st ` X ) = 1 ) ) |
| 59 |
11 1 2 4
|
gpgnbgrvtx1 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) |
| 60 |
21 58 59
|
sylancr |
|- ( ( X = <. 1 , y >. /\ X e. V ) -> N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) |
| 61 |
|
eleq2 |
|- ( N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } -> ( K e. N <-> K e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) ) |
| 62 |
|
eleq2 |
|- ( N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } -> ( L e. N <-> L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) ) |
| 63 |
61 62
|
anbi12d |
|- ( N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } -> ( ( K e. N /\ L e. N ) <-> ( K e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } /\ L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) ) ) |
| 64 |
63
|
adantl |
|- ( ( ( X = <. 1 , y >. /\ X e. V ) /\ N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) -> ( ( K e. N /\ L e. N ) <-> ( K e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } /\ L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) ) ) |
| 65 |
|
eltpi |
|- ( K e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } -> ( K = <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. \/ K = <. 0 , ( 2nd ` X ) >. \/ K = <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. ) ) |
| 66 |
|
eltpi |
|- ( L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } -> ( L = <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. \/ L = <. 0 , ( 2nd ` X ) >. \/ L = <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. ) ) |
| 67 |
1 2 3 4
|
pgnbgreunbgrlem2 |
|- ( ( L = <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. \/ L = <. 0 , ( 2nd ` X ) >. \/ L = <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. ) -> ( ( K = <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. \/ K = <. 0 , ( 2nd ` X ) >. \/ K = <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. ) -> ( ( X = <. 1 , y >. /\ X e. V ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 68 |
66 67
|
syl |
|- ( L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } -> ( ( K = <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. \/ K = <. 0 , ( 2nd ` X ) >. \/ K = <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. ) -> ( ( X = <. 1 , y >. /\ X e. V ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 69 |
65 68
|
mpan9 |
|- ( ( K e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } /\ L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) -> ( ( X = <. 1 , y >. /\ X e. V ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 70 |
69
|
com12 |
|- ( ( X = <. 1 , y >. /\ X e. V ) -> ( ( K e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } /\ L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 71 |
70
|
adantr |
|- ( ( ( X = <. 1 , y >. /\ X e. V ) /\ N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) -> ( ( K e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } /\ L e. { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 72 |
64 71
|
sylbid |
|- ( ( ( X = <. 1 , y >. /\ X e. V ) /\ N = { <. 1 , ( ( ( 2nd ` X ) + 2 ) mod 5 ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - 2 ) mod 5 ) >. } ) -> ( ( K e. N /\ L e. N ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 73 |
60 72
|
mpdan |
|- ( ( X = <. 1 , y >. /\ X e. V ) -> ( ( K e. N /\ L e. N ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 74 |
73
|
com12 |
|- ( ( K e. N /\ L e. N ) -> ( ( X = <. 1 , y >. /\ X e. V ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 75 |
74
|
expd |
|- ( ( K e. N /\ L e. N ) -> ( X = <. 1 , y >. -> ( X e. V -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 76 |
75
|
com24 |
|- ( ( K e. N /\ L e. N ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( X e. V -> ( X = <. 1 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 77 |
76
|
expd |
|- ( ( K e. N /\ L e. N ) -> ( K =/= L -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( X e. V -> ( X = <. 1 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) ) |
| 78 |
77
|
3impia |
|- ( ( K e. N /\ L e. N /\ K =/= L ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( X e. V -> ( X = <. 1 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 79 |
78
|
expdimp |
|- ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) -> ( y e. ( 0 ..^ 5 ) -> ( X e. V -> ( X = <. 1 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 80 |
79
|
com23 |
|- ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) -> ( X e. V -> ( y e. ( 0 ..^ 5 ) -> ( X = <. 1 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 81 |
80
|
imp31 |
|- ( ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) -> ( X = <. 1 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) |
| 82 |
|
opeq1 |
|- ( x = 1 -> <. x , y >. = <. 1 , y >. ) |
| 83 |
82
|
eqeq2d |
|- ( x = 1 -> ( X = <. x , y >. <-> X = <. 1 , y >. ) ) |
| 84 |
83
|
imbi1d |
|- ( x = 1 -> ( ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) <-> ( X = <. 1 , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 85 |
81 84
|
imbitrrid |
|- ( x = 1 -> ( ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 86 |
55 85
|
jaoi |
|- ( ( x = 0 \/ x = 1 ) -> ( ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 87 |
17 86
|
sylbi |
|- ( x e. { 0 , 1 } -> ( ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) /\ y e. ( 0 ..^ 5 ) ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 88 |
87
|
expd |
|- ( x e. { 0 , 1 } -> ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) -> ( y e. ( 0 ..^ 5 ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 89 |
88
|
com12 |
|- ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) -> ( x e. { 0 , 1 } -> ( y e. ( 0 ..^ 5 ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |
| 90 |
89
|
impd |
|- ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) -> ( ( x e. { 0 , 1 } /\ y e. ( 0 ..^ 5 ) ) -> ( X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 91 |
90
|
rexlimdvv |
|- ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) -> ( E. x e. { 0 , 1 } E. y e. ( 0 ..^ 5 ) X = <. x , y >. -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) |
| 92 |
15 91
|
mpd |
|- ( ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) /\ X e. V ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) |
| 93 |
7 92
|
mpidan |
|- ( ( ( K e. N /\ L e. N /\ K =/= L ) /\ b e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) |