Metamath Proof Explorer


Theorem pilem3

Description: Lemma for pire , pigt2lt4 and sinpi . Existence part. (Contributed by Paul Chapman, 23-Jan-2008) (Proof shortened by Mario Carneiro, 18-Jun-2014) (Revised by AV, 14-Sep-2020) (Proof shortened by BJ, 30-Jun-2022)

Ref Expression
Assertion pilem3
|- ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 )

Proof

Step Hyp Ref Expression
1 2re
 |-  2 e. RR
2 1 a1i
 |-  ( T. -> 2 e. RR )
3 4re
 |-  4 e. RR
4 3 a1i
 |-  ( T. -> 4 e. RR )
5 0red
 |-  ( T. -> 0 e. RR )
6 2lt4
 |-  2 < 4
7 6 a1i
 |-  ( T. -> 2 < 4 )
8 iccssre
 |-  ( ( 2 e. RR /\ 4 e. RR ) -> ( 2 [,] 4 ) C_ RR )
9 1 3 8 mp2an
 |-  ( 2 [,] 4 ) C_ RR
10 ax-resscn
 |-  RR C_ CC
11 9 10 sstri
 |-  ( 2 [,] 4 ) C_ CC
12 11 a1i
 |-  ( T. -> ( 2 [,] 4 ) C_ CC )
13 sincn
 |-  sin e. ( CC -cn-> CC )
14 13 a1i
 |-  ( T. -> sin e. ( CC -cn-> CC ) )
15 9 sseli
 |-  ( y e. ( 2 [,] 4 ) -> y e. RR )
16 15 resincld
 |-  ( y e. ( 2 [,] 4 ) -> ( sin ` y ) e. RR )
17 16 adantl
 |-  ( ( T. /\ y e. ( 2 [,] 4 ) ) -> ( sin ` y ) e. RR )
18 sin4lt0
 |-  ( sin ` 4 ) < 0
19 sincos2sgn
 |-  ( 0 < ( sin ` 2 ) /\ ( cos ` 2 ) < 0 )
20 19 simpli
 |-  0 < ( sin ` 2 )
21 18 20 pm3.2i
 |-  ( ( sin ` 4 ) < 0 /\ 0 < ( sin ` 2 ) )
22 21 a1i
 |-  ( T. -> ( ( sin ` 4 ) < 0 /\ 0 < ( sin ` 2 ) ) )
23 2 4 5 7 12 14 17 22 ivth2
 |-  ( T. -> E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 )
24 23 mptru
 |-  E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0
25 df-pi
 |-  _pi = inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < )
26 inss1
 |-  ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR+
27 rpssre
 |-  RR+ C_ RR
28 26 27 sstri
 |-  ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR
29 0re
 |-  0 e. RR
30 26 sseli
 |-  ( z e. ( RR+ i^i ( `' sin " { 0 } ) ) -> z e. RR+ )
31 30 rpge0d
 |-  ( z e. ( RR+ i^i ( `' sin " { 0 } ) ) -> 0 <_ z )
32 31 rgen
 |-  A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z
33 breq1
 |-  ( y = 0 -> ( y <_ z <-> 0 <_ z ) )
34 33 ralbidv
 |-  ( y = 0 -> ( A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z <-> A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z ) )
35 34 rspcev
 |-  ( ( 0 e. RR /\ A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z ) -> E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z )
36 29 32 35 mp2an
 |-  E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z
37 elioore
 |-  ( x e. ( 2 (,) 4 ) -> x e. RR )
38 37 adantr
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. RR )
39 0red
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 e. RR )
40 1 a1i
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 2 e. RR )
41 2pos
 |-  0 < 2
42 41 a1i
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 < 2 )
43 eliooord
 |-  ( x e. ( 2 (,) 4 ) -> ( 2 < x /\ x < 4 ) )
44 43 simpld
 |-  ( x e. ( 2 (,) 4 ) -> 2 < x )
45 44 adantr
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 2 < x )
46 39 40 38 42 45 lttrd
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 < x )
47 38 46 elrpd
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. RR+ )
48 simpr
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` x ) = 0 )
49 pilem1
 |-  ( x e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( x e. RR+ /\ ( sin ` x ) = 0 ) )
50 47 48 49 sylanbrc
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. ( RR+ i^i ( `' sin " { 0 } ) ) )
51 infrelb
 |-  ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z /\ x e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ x )
52 28 36 50 51 mp3an12i
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ x )
53 25 52 eqbrtrid
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi <_ x )
54 simpll
 |-  ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> x e. ( 2 (,) 4 ) )
55 simpr
 |-  ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> y e. ( RR+ i^i ( `' sin " { 0 } ) ) )
56 pilem1
 |-  ( y e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( y e. RR+ /\ ( sin ` y ) = 0 ) )
57 55 56 sylib
 |-  ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( y e. RR+ /\ ( sin ` y ) = 0 ) )
58 57 simpld
 |-  ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> y e. RR+ )
59 simplr
 |-  ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( sin ` x ) = 0 )
60 57 simprd
 |-  ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( sin ` y ) = 0 )
61 54 58 59 60 pilem2
 |-  ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( ( _pi + x ) / 2 ) <_ y )
62 61 ralrimiva
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y )
63 28 a1i
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR )
64 50 ne0d
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) )
65 36 a1i
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z )
66 infrecl
 |-  ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR )
67 28 36 66 mp3an13
 |-  ( ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR )
68 64 67 syl
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR )
69 25 68 eqeltrid
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. RR )
70 69 38 readdcld
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi + x ) e. RR )
71 70 rehalfcld
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) e. RR )
72 infregelb
 |-  ( ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) /\ ( ( _pi + x ) / 2 ) e. RR ) -> ( ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) )
73 63 64 65 71 72 syl31anc
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) )
74 62 73 mpbird
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) )
75 74 25 breqtrrdi
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) <_ _pi )
76 69 recnd
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. CC )
77 38 recnd
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. CC )
78 76 77 addcomd
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi + x ) = ( x + _pi ) )
79 78 oveq1d
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) = ( ( x + _pi ) / 2 ) )
80 79 breq1d
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) )
81 avgle2
 |-  ( ( x e. RR /\ _pi e. RR ) -> ( x <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) )
82 38 69 81 syl2anc
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( x <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) )
83 80 82 bitr4d
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ _pi <-> x <_ _pi ) )
84 75 83 mpbid
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x <_ _pi )
85 69 38 letri3d
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi = x <-> ( _pi <_ x /\ x <_ _pi ) ) )
86 53 84 85 mpbir2and
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi = x )
87 simpl
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. ( 2 (,) 4 ) )
88 86 87 eqeltrd
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. ( 2 (,) 4 ) )
89 86 fveq2d
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` _pi ) = ( sin ` x ) )
90 89 48 eqtrd
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` _pi ) = 0 )
91 88 90 jca
 |-  ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) )
92 91 rexlimiva
 |-  ( E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 -> ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) )
93 24 92 ax-mp
 |-  ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 )