Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
1
|
a1i |
|- ( T. -> 2 e. RR ) |
3 |
|
4re |
|- 4 e. RR |
4 |
3
|
a1i |
|- ( T. -> 4 e. RR ) |
5 |
|
0red |
|- ( T. -> 0 e. RR ) |
6 |
|
2lt4 |
|- 2 < 4 |
7 |
6
|
a1i |
|- ( T. -> 2 < 4 ) |
8 |
|
iccssre |
|- ( ( 2 e. RR /\ 4 e. RR ) -> ( 2 [,] 4 ) C_ RR ) |
9 |
1 3 8
|
mp2an |
|- ( 2 [,] 4 ) C_ RR |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
9 10
|
sstri |
|- ( 2 [,] 4 ) C_ CC |
12 |
11
|
a1i |
|- ( T. -> ( 2 [,] 4 ) C_ CC ) |
13 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
14 |
13
|
a1i |
|- ( T. -> sin e. ( CC -cn-> CC ) ) |
15 |
9
|
sseli |
|- ( y e. ( 2 [,] 4 ) -> y e. RR ) |
16 |
15
|
resincld |
|- ( y e. ( 2 [,] 4 ) -> ( sin ` y ) e. RR ) |
17 |
16
|
adantl |
|- ( ( T. /\ y e. ( 2 [,] 4 ) ) -> ( sin ` y ) e. RR ) |
18 |
|
sin4lt0 |
|- ( sin ` 4 ) < 0 |
19 |
|
sincos2sgn |
|- ( 0 < ( sin ` 2 ) /\ ( cos ` 2 ) < 0 ) |
20 |
19
|
simpli |
|- 0 < ( sin ` 2 ) |
21 |
18 20
|
pm3.2i |
|- ( ( sin ` 4 ) < 0 /\ 0 < ( sin ` 2 ) ) |
22 |
21
|
a1i |
|- ( T. -> ( ( sin ` 4 ) < 0 /\ 0 < ( sin ` 2 ) ) ) |
23 |
2 4 5 7 12 14 17 22
|
ivth2 |
|- ( T. -> E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 ) |
24 |
23
|
mptru |
|- E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 |
25 |
|
df-pi |
|- _pi = inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) |
26 |
|
inss1 |
|- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR+ |
27 |
|
rpssre |
|- RR+ C_ RR |
28 |
26 27
|
sstri |
|- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR |
29 |
|
0re |
|- 0 e. RR |
30 |
26
|
sseli |
|- ( z e. ( RR+ i^i ( `' sin " { 0 } ) ) -> z e. RR+ ) |
31 |
30
|
rpge0d |
|- ( z e. ( RR+ i^i ( `' sin " { 0 } ) ) -> 0 <_ z ) |
32 |
31
|
rgen |
|- A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z |
33 |
|
breq1 |
|- ( y = 0 -> ( y <_ z <-> 0 <_ z ) ) |
34 |
33
|
ralbidv |
|- ( y = 0 -> ( A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z <-> A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z ) ) |
35 |
34
|
rspcev |
|- ( ( 0 e. RR /\ A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z ) -> E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) |
36 |
29 32 35
|
mp2an |
|- E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z |
37 |
|
elioore |
|- ( x e. ( 2 (,) 4 ) -> x e. RR ) |
38 |
37
|
adantr |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. RR ) |
39 |
|
0red |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 e. RR ) |
40 |
1
|
a1i |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 2 e. RR ) |
41 |
|
2pos |
|- 0 < 2 |
42 |
41
|
a1i |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 < 2 ) |
43 |
|
eliooord |
|- ( x e. ( 2 (,) 4 ) -> ( 2 < x /\ x < 4 ) ) |
44 |
43
|
simpld |
|- ( x e. ( 2 (,) 4 ) -> 2 < x ) |
45 |
44
|
adantr |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 2 < x ) |
46 |
39 40 38 42 45
|
lttrd |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 < x ) |
47 |
38 46
|
elrpd |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. RR+ ) |
48 |
|
simpr |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` x ) = 0 ) |
49 |
|
pilem1 |
|- ( x e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( x e. RR+ /\ ( sin ` x ) = 0 ) ) |
50 |
47 48 49
|
sylanbrc |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
51 |
|
infrelb |
|- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z /\ x e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ x ) |
52 |
28 36 50 51
|
mp3an12i |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ x ) |
53 |
25 52
|
eqbrtrid |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi <_ x ) |
54 |
|
simpll |
|- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> x e. ( 2 (,) 4 ) ) |
55 |
|
simpr |
|- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
56 |
|
pilem1 |
|- ( y e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( y e. RR+ /\ ( sin ` y ) = 0 ) ) |
57 |
55 56
|
sylib |
|- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( y e. RR+ /\ ( sin ` y ) = 0 ) ) |
58 |
57
|
simpld |
|- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> y e. RR+ ) |
59 |
|
simplr |
|- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( sin ` x ) = 0 ) |
60 |
57
|
simprd |
|- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( sin ` y ) = 0 ) |
61 |
54 58 59 60
|
pilem2 |
|- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( ( _pi + x ) / 2 ) <_ y ) |
62 |
61
|
ralrimiva |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) |
63 |
28
|
a1i |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR ) |
64 |
50
|
ne0d |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) ) |
65 |
36
|
a1i |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) |
66 |
|
infrecl |
|- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
67 |
28 36 66
|
mp3an13 |
|- ( ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
68 |
64 67
|
syl |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
69 |
25 68
|
eqeltrid |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. RR ) |
70 |
69 38
|
readdcld |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi + x ) e. RR ) |
71 |
70
|
rehalfcld |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) e. RR ) |
72 |
|
infregelb |
|- ( ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) /\ ( ( _pi + x ) / 2 ) e. RR ) -> ( ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) ) |
73 |
63 64 65 71 72
|
syl31anc |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) ) |
74 |
62 73
|
mpbird |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) ) |
75 |
74 25
|
breqtrrdi |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) <_ _pi ) |
76 |
69
|
recnd |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. CC ) |
77 |
38
|
recnd |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. CC ) |
78 |
76 77
|
addcomd |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi + x ) = ( x + _pi ) ) |
79 |
78
|
oveq1d |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) = ( ( x + _pi ) / 2 ) ) |
80 |
79
|
breq1d |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) ) |
81 |
|
avgle2 |
|- ( ( x e. RR /\ _pi e. RR ) -> ( x <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) ) |
82 |
38 69 81
|
syl2anc |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( x <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) ) |
83 |
80 82
|
bitr4d |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ _pi <-> x <_ _pi ) ) |
84 |
75 83
|
mpbid |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x <_ _pi ) |
85 |
69 38
|
letri3d |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi = x <-> ( _pi <_ x /\ x <_ _pi ) ) ) |
86 |
53 84 85
|
mpbir2and |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi = x ) |
87 |
|
simpl |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. ( 2 (,) 4 ) ) |
88 |
86 87
|
eqeltrd |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. ( 2 (,) 4 ) ) |
89 |
86
|
fveq2d |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` _pi ) = ( sin ` x ) ) |
90 |
89 48
|
eqtrd |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` _pi ) = 0 ) |
91 |
88 90
|
jca |
|- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) ) |
92 |
91
|
rexlimiva |
|- ( E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 -> ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) ) |
93 |
24 92
|
ax-mp |
|- ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) |