| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmodlem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
pmodlem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
pmodlem.a |
|- A = ( Atoms ` K ) |
| 4 |
|
pmodlem.s |
|- S = ( PSubSp ` K ) |
| 5 |
|
pmodlem.p |
|- .+ = ( +P ` K ) |
| 6 |
|
simpr |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> X = (/) ) |
| 7 |
6
|
oveq1d |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( X .+ Y ) = ( (/) .+ Y ) ) |
| 8 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> K e. HL ) |
| 9 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> Y C_ A ) |
| 10 |
3 5
|
padd02 |
|- ( ( K e. HL /\ Y C_ A ) -> ( (/) .+ Y ) = Y ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( (/) .+ Y ) = Y ) |
| 12 |
7 11
|
eqtrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( X .+ Y ) = Y ) |
| 13 |
12
|
ineq1d |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( ( X .+ Y ) i^i Z ) = ( Y i^i Z ) ) |
| 14 |
|
ssinss1 |
|- ( Y C_ A -> ( Y i^i Z ) C_ A ) |
| 15 |
9 14
|
syl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( Y i^i Z ) C_ A ) |
| 16 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> X C_ A ) |
| 17 |
3 5
|
sspadd2 |
|- ( ( K e. HL /\ ( Y i^i Z ) C_ A /\ X C_ A ) -> ( Y i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 18 |
8 15 16 17
|
syl3anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( Y i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 19 |
13 18
|
eqsstrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 20 |
|
oveq2 |
|- ( Y = (/) -> ( X .+ Y ) = ( X .+ (/) ) ) |
| 21 |
|
simp1 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> K e. HL ) |
| 22 |
|
simp21 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> X C_ A ) |
| 23 |
3 5
|
padd01 |
|- ( ( K e. HL /\ X C_ A ) -> ( X .+ (/) ) = X ) |
| 24 |
21 22 23
|
syl2anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( X .+ (/) ) = X ) |
| 25 |
20 24
|
sylan9eqr |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( X .+ Y ) = X ) |
| 26 |
25
|
ineq1d |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( ( X .+ Y ) i^i Z ) = ( X i^i Z ) ) |
| 27 |
|
inss1 |
|- ( X i^i Z ) C_ X |
| 28 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> K e. HL ) |
| 29 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> X C_ A ) |
| 30 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> Y C_ A ) |
| 31 |
30 14
|
syl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( Y i^i Z ) C_ A ) |
| 32 |
3 5
|
sspadd1 |
|- ( ( K e. HL /\ X C_ A /\ ( Y i^i Z ) C_ A ) -> X C_ ( X .+ ( Y i^i Z ) ) ) |
| 33 |
28 29 31 32
|
syl3anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> X C_ ( X .+ ( Y i^i Z ) ) ) |
| 34 |
27 33
|
sstrid |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( X i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 35 |
26 34
|
eqsstrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 36 |
|
elin |
|- ( p e. ( ( X .+ Y ) i^i Z ) <-> ( p e. ( X .+ Y ) /\ p e. Z ) ) |
| 37 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> K e. HL ) |
| 38 |
37
|
hllatd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> K e. Lat ) |
| 39 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> X C_ A ) |
| 40 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> Y C_ A ) |
| 41 |
|
simprl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( X =/= (/) /\ Y =/= (/) ) ) |
| 42 |
1 2 3 5
|
elpaddn0 |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( p e. ( X .+ Y ) <-> ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) ) ) |
| 43 |
38 39 40 41 42
|
syl31anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( p e. ( X .+ Y ) <-> ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) ) ) |
| 44 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> K e. HL ) |
| 45 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> X C_ A ) |
| 46 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> Y C_ A ) |
| 47 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> Z e. S ) |
| 48 |
|
simpl3 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> X C_ Z ) |
| 49 |
|
simpr1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p e. Z ) |
| 50 |
|
simpr2l |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> q e. X ) |
| 51 |
|
simpr2r |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> r e. Y ) |
| 52 |
|
simpr3 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p .<_ ( q .\/ r ) ) |
| 53 |
1 2 3 4 5
|
pmodlem1 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( Z e. S /\ X C_ Z /\ p e. Z ) /\ ( q e. X /\ r e. Y /\ p .<_ ( q .\/ r ) ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) |
| 54 |
44 45 46 47 48 49 50 51 52 53
|
syl333anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) |
| 55 |
54
|
3exp2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( p e. Z -> ( ( q e. X /\ r e. Y ) -> ( p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
| 56 |
55
|
imp |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( ( q e. X /\ r e. Y ) -> ( p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) |
| 57 |
56
|
rexlimdvv |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( E. q e. X E. r e. Y p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 58 |
57
|
adantld |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 59 |
58
|
adantrl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 60 |
43 59
|
sylbid |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( p e. ( X .+ Y ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 61 |
60
|
exp32 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X =/= (/) /\ Y =/= (/) ) -> ( p e. Z -> ( p e. ( X .+ Y ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
| 62 |
61
|
com34 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X =/= (/) /\ Y =/= (/) ) -> ( p e. ( X .+ Y ) -> ( p e. Z -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
| 63 |
62
|
imp4b |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( p e. ( X .+ Y ) /\ p e. Z ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 64 |
36 63
|
biimtrid |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( p e. ( ( X .+ Y ) i^i Z ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 65 |
64
|
ssrdv |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 66 |
19 35 65
|
pm2.61da2ne |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |