| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgr2pthlem.v |
|- V = ( Vtx ` G ) |
| 2 |
|
usgr2pthlem.i |
|- I = ( iEdg ` G ) |
| 3 |
|
0nn0 |
|- 0 e. NN0 |
| 4 |
|
2nn0 |
|- 2 e. NN0 |
| 5 |
|
0le2 |
|- 0 <_ 2 |
| 6 |
|
elfz2nn0 |
|- ( 0 e. ( 0 ... 2 ) <-> ( 0 e. NN0 /\ 2 e. NN0 /\ 0 <_ 2 ) ) |
| 7 |
3 4 5 6
|
mpbir3an |
|- 0 e. ( 0 ... 2 ) |
| 8 |
|
ffvelcdm |
|- ( ( P : ( 0 ... 2 ) --> V /\ 0 e. ( 0 ... 2 ) ) -> ( P ` 0 ) e. V ) |
| 9 |
7 8
|
mpan2 |
|- ( P : ( 0 ... 2 ) --> V -> ( P ` 0 ) e. V ) |
| 10 |
9
|
adantl |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 0 ) e. V ) |
| 11 |
|
1nn0 |
|- 1 e. NN0 |
| 12 |
|
1le2 |
|- 1 <_ 2 |
| 13 |
|
elfz2nn0 |
|- ( 1 e. ( 0 ... 2 ) <-> ( 1 e. NN0 /\ 2 e. NN0 /\ 1 <_ 2 ) ) |
| 14 |
11 4 12 13
|
mpbir3an |
|- 1 e. ( 0 ... 2 ) |
| 15 |
|
ffvelcdm |
|- ( ( P : ( 0 ... 2 ) --> V /\ 1 e. ( 0 ... 2 ) ) -> ( P ` 1 ) e. V ) |
| 16 |
14 15
|
mpan2 |
|- ( P : ( 0 ... 2 ) --> V -> ( P ` 1 ) e. V ) |
| 17 |
16
|
adantl |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 1 ) e. V ) |
| 18 |
|
simpr |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> G e. USGraph ) |
| 19 |
|
fvex |
|- ( P ` 1 ) e. _V |
| 20 |
18 19
|
jctir |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( G e. USGraph /\ ( P ` 1 ) e. _V ) ) |
| 21 |
|
prcom |
|- { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 0 ) } |
| 22 |
21
|
eqeq2i |
|- ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } <-> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 23 |
22
|
biimpi |
|- ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 24 |
23
|
adantr |
|- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 26 |
2
|
usgrnloopv |
|- ( ( G e. USGraph /\ ( P ` 1 ) e. _V ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } -> ( P ` 1 ) =/= ( P ` 0 ) ) ) |
| 27 |
20 25 26
|
sylc |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
| 28 |
27
|
adantr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
| 29 |
19
|
elsn |
|- ( ( P ` 1 ) e. { ( P ` 0 ) } <-> ( P ` 1 ) = ( P ` 0 ) ) |
| 30 |
29
|
necon3bbii |
|- ( -. ( P ` 1 ) e. { ( P ` 0 ) } <-> ( P ` 1 ) =/= ( P ` 0 ) ) |
| 31 |
28 30
|
sylibr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> -. ( P ` 1 ) e. { ( P ` 0 ) } ) |
| 32 |
17 31
|
eldifd |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) |
| 33 |
32
|
adantr |
|- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) |
| 34 |
|
sneq |
|- ( x = ( P ` 0 ) -> { x } = { ( P ` 0 ) } ) |
| 35 |
34
|
difeq2d |
|- ( x = ( P ` 0 ) -> ( V \ { x } ) = ( V \ { ( P ` 0 ) } ) ) |
| 36 |
35
|
eleq2d |
|- ( x = ( P ` 0 ) -> ( ( P ` 1 ) e. ( V \ { x } ) <-> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) ) |
| 37 |
36
|
adantl |
|- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( ( P ` 1 ) e. ( V \ { x } ) <-> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) ) |
| 38 |
33 37
|
mpbird |
|- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( P ` 1 ) e. ( V \ { x } ) ) |
| 39 |
|
2re |
|- 2 e. RR |
| 40 |
39
|
leidi |
|- 2 <_ 2 |
| 41 |
|
elfz2nn0 |
|- ( 2 e. ( 0 ... 2 ) <-> ( 2 e. NN0 /\ 2 e. NN0 /\ 2 <_ 2 ) ) |
| 42 |
4 4 40 41
|
mpbir3an |
|- 2 e. ( 0 ... 2 ) |
| 43 |
|
ffvelcdm |
|- ( ( P : ( 0 ... 2 ) --> V /\ 2 e. ( 0 ... 2 ) ) -> ( P ` 2 ) e. V ) |
| 44 |
42 43
|
mpan2 |
|- ( P : ( 0 ... 2 ) --> V -> ( P ` 2 ) e. V ) |
| 45 |
44
|
adantl |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) e. V ) |
| 46 |
2
|
usgrf1 |
|- ( G e. USGraph -> I : dom I -1-1-> ran I ) |
| 47 |
46
|
ad2antlr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> I : dom I -1-1-> ran I ) |
| 48 |
|
simpl |
|- ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> F : ( 0 ..^ 2 ) -1-1-> dom I ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> F : ( 0 ..^ 2 ) -1-1-> dom I ) |
| 50 |
47 49
|
jca |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( I : dom I -1-1-> ran I /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 51 |
|
2nn |
|- 2 e. NN |
| 52 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) |
| 53 |
51 52
|
mpbir |
|- 0 e. ( 0 ..^ 2 ) |
| 54 |
|
1lt2 |
|- 1 < 2 |
| 55 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
| 56 |
11 51 54 55
|
mpbir3an |
|- 1 e. ( 0 ..^ 2 ) |
| 57 |
53 56
|
pm3.2i |
|- ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) |
| 58 |
57
|
a1i |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) ) |
| 59 |
|
0ne1 |
|- 0 =/= 1 |
| 60 |
59
|
a1i |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> 0 =/= 1 ) |
| 61 |
50 58 60
|
3jca |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( I : dom I -1-1-> ran I /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) /\ 0 =/= 1 ) ) |
| 62 |
|
simpr |
|- ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 63 |
62
|
ad2antrr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 64 |
|
2f1fvneq |
|- ( ( ( I : dom I -1-1-> ran I /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) /\ 0 =/= 1 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 65 |
61 63 64
|
sylc |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) |
| 66 |
|
necom |
|- ( ( P ` 2 ) =/= ( P ` 0 ) <-> ( P ` 0 ) =/= ( P ` 2 ) ) |
| 67 |
|
fvex |
|- ( P ` 0 ) e. _V |
| 68 |
|
fvex |
|- ( P ` 2 ) e. _V |
| 69 |
67 19 68
|
3pm3.2i |
|- ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) |
| 70 |
|
fvexd |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( P ` 0 ) e. _V ) |
| 71 |
|
simpl |
|- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 72 |
71
|
ad2antlr |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 73 |
18 70 72
|
jca31 |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) /\ ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 74 |
73
|
adantr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) /\ ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 75 |
2
|
usgrnloopv |
|- ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 76 |
75
|
imp |
|- ( ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) /\ ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 77 |
74 76
|
syl |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 78 |
|
pr1nebg |
|- ( ( ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> ( ( P ` 0 ) =/= ( P ` 2 ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 79 |
69 77 78
|
sylancr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( P ` 0 ) =/= ( P ` 2 ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 80 |
66 79
|
bitrid |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( P ` 2 ) =/= ( P ` 0 ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 81 |
65 80
|
mpbird |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) =/= ( P ` 0 ) ) |
| 82 |
|
fvexd |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( P ` 2 ) e. _V ) |
| 83 |
|
prcom |
|- { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 2 ) , ( P ` 1 ) } |
| 84 |
83
|
eqeq2i |
|- ( ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } <-> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 85 |
84
|
biimpi |
|- ( ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 86 |
85
|
adantl |
|- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 87 |
86
|
ad2antlr |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 88 |
18 82 87
|
jca31 |
|- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) /\ ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) ) |
| 89 |
88
|
adantr |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) /\ ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) ) |
| 90 |
2
|
usgrnloopv |
|- ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) -> ( ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 91 |
90
|
imp |
|- ( ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) /\ ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
| 92 |
89 91
|
syl |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
| 93 |
81 92
|
nelprd |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> -. ( P ` 2 ) e. { ( P ` 0 ) , ( P ` 1 ) } ) |
| 94 |
45 93
|
eldifd |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 95 |
94
|
ad2antrr |
|- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 96 |
|
preq12 |
|- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) -> { x , y } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 97 |
96
|
difeq2d |
|- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) -> ( V \ { x , y } ) = ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 98 |
97
|
eleq2d |
|- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) -> ( ( P ` 2 ) e. ( V \ { x , y } ) <-> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
| 99 |
98
|
adantll |
|- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( ( P ` 2 ) e. ( V \ { x , y } ) <-> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
| 100 |
95 99
|
mpbird |
|- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( P ` 2 ) e. ( V \ { x , y } ) ) |
| 101 |
|
eqcom |
|- ( x = ( P ` 0 ) <-> ( P ` 0 ) = x ) |
| 102 |
|
eqcom |
|- ( y = ( P ` 1 ) <-> ( P ` 1 ) = y ) |
| 103 |
|
eqcom |
|- ( z = ( P ` 2 ) <-> ( P ` 2 ) = z ) |
| 104 |
101 102 103
|
3anbi123i |
|- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) /\ z = ( P ` 2 ) ) <-> ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) ) |
| 105 |
104
|
biimpi |
|- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) /\ z = ( P ` 2 ) ) -> ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) ) |
| 106 |
105
|
ad4ant123 |
|- ( ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) ) |
| 107 |
101
|
biimpi |
|- ( x = ( P ` 0 ) -> ( P ` 0 ) = x ) |
| 108 |
107
|
ad2antrr |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( P ` 0 ) = x ) |
| 109 |
102
|
biimpi |
|- ( y = ( P ` 1 ) -> ( P ` 1 ) = y ) |
| 110 |
109
|
ad2antlr |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( P ` 1 ) = y ) |
| 111 |
108 110
|
preq12d |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> { ( P ` 0 ) , ( P ` 1 ) } = { x , y } ) |
| 112 |
111
|
eqeq2d |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } <-> ( I ` ( F ` 0 ) ) = { x , y } ) ) |
| 113 |
103
|
biimpi |
|- ( z = ( P ` 2 ) -> ( P ` 2 ) = z ) |
| 114 |
113
|
adantl |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( P ` 2 ) = z ) |
| 115 |
110 114
|
preq12d |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> { ( P ` 1 ) , ( P ` 2 ) } = { y , z } ) |
| 116 |
115
|
eqeq2d |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } <-> ( I ` ( F ` 1 ) ) = { y , z } ) ) |
| 117 |
112 116
|
anbi12d |
|- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) <-> ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) |
| 118 |
117
|
biimpa |
|- ( ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) |
| 119 |
106 118
|
jca |
|- ( ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) |
| 120 |
119
|
exp41 |
|- ( x = ( P ` 0 ) -> ( y = ( P ` 1 ) -> ( z = ( P ` 2 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 121 |
120
|
adantl |
|- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( y = ( P ` 1 ) -> ( z = ( P ` 2 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 122 |
121
|
imp31 |
|- ( ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 123 |
100 122
|
rspcimedv |
|- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 124 |
38 123
|
rspcimedv |
|- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 125 |
10 124
|
rspcimedv |
|- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 126 |
125
|
exp41 |
|- ( F : ( 0 ..^ 2 ) -1-1-> dom I -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( G e. USGraph -> ( P : ( 0 ... 2 ) --> V -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) ) |
| 127 |
126
|
com15 |
|- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( G e. USGraph -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) ) |
| 128 |
127
|
pm2.43i |
|- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( G e. USGraph -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 129 |
128
|
com12 |
|- ( G e. USGraph -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 130 |
129
|
adantr |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 131 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
| 132 |
131
|
raleqdv |
|- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. ( 0 ..^ 2 ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 133 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
| 134 |
133
|
raleqi |
|- ( A. i e. ( 0 ..^ 2 ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. { 0 , 1 } ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 135 |
|
2wlklem |
|- ( A. i e. { 0 , 1 } ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 136 |
134 135
|
bitri |
|- ( A. i e. ( 0 ..^ 2 ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 137 |
132 136
|
bitrdi |
|- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
| 138 |
137
|
adantl |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
| 139 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) ) |
| 140 |
139
|
feq2d |
|- ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 2 ) --> V ) ) |
| 141 |
140
|
adantl |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 2 ) --> V ) ) |
| 142 |
|
f1eq2 |
|- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 143 |
131 142
|
syl |
|- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 144 |
143
|
imbi1d |
|- ( ( # ` F ) = 2 -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 145 |
144
|
adantl |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 146 |
141 145
|
imbi12d |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) <-> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 147 |
130 138 146
|
3imtr4d |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 148 |
147
|
com14 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 149 |
148
|
com23 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 150 |
149
|
3imp |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |