| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> A e. RR ) |
| 2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 4 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 5 |
|
adddi |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 6 |
2 3 4 5
|
syl3an |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 7 |
6
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 8 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 9 |
|
rexmul |
|- ( ( A e. RR /\ ( B + C ) e. RR ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) |
| 10 |
8 9
|
sylan2 |
|- ( ( A e. RR /\ ( B e. RR /\ C e. RR ) ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) |
| 11 |
10
|
anassrs |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) |
| 12 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
| 13 |
12
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. B ) e. RR ) |
| 14 |
|
remulcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 15 |
14
|
adantlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 16 |
13 15
|
rexaddd |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) +e ( A x. C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 17 |
7 11 16
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B + C ) ) = ( ( A x. B ) +e ( A x. C ) ) ) |
| 18 |
|
rexadd |
|- ( ( B e. RR /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
| 19 |
18
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
| 20 |
19
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e ( B + C ) ) ) |
| 21 |
|
rexmul |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
| 22 |
21
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e B ) = ( A x. B ) ) |
| 23 |
|
rexmul |
|- ( ( A e. RR /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) |
| 24 |
23
|
adantlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) |
| 25 |
22 24
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A x. B ) +e ( A x. C ) ) ) |
| 26 |
17 20 25
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 27 |
1 26
|
sylanl1 |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 28 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 29 |
28
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) |
| 30 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
| 31 |
29 30
|
sylan |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
| 32 |
31
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e +oo ) = +oo ) |
| 33 |
21 12
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) e. RR ) |
| 34 |
1 33
|
sylan |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e B ) e. RR ) |
| 35 |
|
rexr |
|- ( ( A *e B ) e. RR -> ( A *e B ) e. RR* ) |
| 36 |
|
renemnf |
|- ( ( A *e B ) e. RR -> ( A *e B ) =/= -oo ) |
| 37 |
|
xaddpnf1 |
|- ( ( ( A *e B ) e. RR* /\ ( A *e B ) =/= -oo ) -> ( ( A *e B ) +e +oo ) = +oo ) |
| 38 |
35 36 37
|
syl2anc |
|- ( ( A *e B ) e. RR -> ( ( A *e B ) +e +oo ) = +oo ) |
| 39 |
34 38
|
syl |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( ( A *e B ) +e +oo ) = +oo ) |
| 40 |
32 39
|
eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e +oo ) = ( ( A *e B ) +e +oo ) ) |
| 41 |
40
|
adantr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e +oo ) = ( ( A *e B ) +e +oo ) ) |
| 42 |
|
oveq2 |
|- ( C = +oo -> ( B +e C ) = ( B +e +oo ) ) |
| 43 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 44 |
|
renemnf |
|- ( B e. RR -> B =/= -oo ) |
| 45 |
|
xaddpnf1 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
| 46 |
43 44 45
|
syl2anc |
|- ( B e. RR -> ( B +e +oo ) = +oo ) |
| 47 |
46
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( B +e +oo ) = +oo ) |
| 48 |
42 47
|
sylan9eqr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( B +e C ) = +oo ) |
| 49 |
48
|
oveq2d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 50 |
|
oveq2 |
|- ( C = +oo -> ( A *e C ) = ( A *e +oo ) ) |
| 51 |
50 32
|
sylan9eqr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e C ) = +oo ) |
| 52 |
51
|
oveq2d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e B ) +e +oo ) ) |
| 53 |
41 49 52
|
3eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 54 |
|
xmulmnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e -oo ) = -oo ) |
| 55 |
29 54
|
sylan |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e -oo ) = -oo ) |
| 56 |
55
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e -oo ) = -oo ) |
| 57 |
56
|
adantr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e -oo ) = -oo ) |
| 58 |
34
|
adantr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e B ) e. RR ) |
| 59 |
|
renepnf |
|- ( ( A *e B ) e. RR -> ( A *e B ) =/= +oo ) |
| 60 |
|
xaddmnf1 |
|- ( ( ( A *e B ) e. RR* /\ ( A *e B ) =/= +oo ) -> ( ( A *e B ) +e -oo ) = -oo ) |
| 61 |
35 59 60
|
syl2anc |
|- ( ( A *e B ) e. RR -> ( ( A *e B ) +e -oo ) = -oo ) |
| 62 |
58 61
|
syl |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( ( A *e B ) +e -oo ) = -oo ) |
| 63 |
57 62
|
eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e -oo ) = ( ( A *e B ) +e -oo ) ) |
| 64 |
|
oveq2 |
|- ( C = -oo -> ( B +e C ) = ( B +e -oo ) ) |
| 65 |
|
renepnf |
|- ( B e. RR -> B =/= +oo ) |
| 66 |
|
xaddmnf1 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( B +e -oo ) = -oo ) |
| 67 |
43 65 66
|
syl2anc |
|- ( B e. RR -> ( B +e -oo ) = -oo ) |
| 68 |
67
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( B +e -oo ) = -oo ) |
| 69 |
64 68
|
sylan9eqr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( B +e C ) = -oo ) |
| 70 |
69
|
oveq2d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 71 |
|
oveq2 |
|- ( C = -oo -> ( A *e C ) = ( A *e -oo ) ) |
| 72 |
71 56
|
sylan9eqr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e C ) = -oo ) |
| 73 |
72
|
oveq2d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e B ) +e -oo ) ) |
| 74 |
63 70 73
|
3eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 75 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> C e. RR* ) |
| 76 |
|
elxr |
|- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 77 |
75 76
|
sylib |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 78 |
77
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 79 |
27 53 74 78
|
mpjao3dan |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 80 |
31
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e +oo ) = +oo ) |
| 81 |
1
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> A e. RR ) |
| 82 |
23 14
|
eqeltrd |
|- ( ( A e. RR /\ C e. RR ) -> ( A *e C ) e. RR ) |
| 83 |
81 82
|
sylan |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e C ) e. RR ) |
| 84 |
|
rexr |
|- ( ( A *e C ) e. RR -> ( A *e C ) e. RR* ) |
| 85 |
|
renemnf |
|- ( ( A *e C ) e. RR -> ( A *e C ) =/= -oo ) |
| 86 |
|
xaddpnf2 |
|- ( ( ( A *e C ) e. RR* /\ ( A *e C ) =/= -oo ) -> ( +oo +e ( A *e C ) ) = +oo ) |
| 87 |
84 85 86
|
syl2anc |
|- ( ( A *e C ) e. RR -> ( +oo +e ( A *e C ) ) = +oo ) |
| 88 |
83 87
|
syl |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( +oo +e ( A *e C ) ) = +oo ) |
| 89 |
80 88
|
eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e +oo ) = ( +oo +e ( A *e C ) ) ) |
| 90 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> B = +oo ) |
| 91 |
90
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( B +e C ) = ( +oo +e C ) ) |
| 92 |
|
rexr |
|- ( C e. RR -> C e. RR* ) |
| 93 |
|
renemnf |
|- ( C e. RR -> C =/= -oo ) |
| 94 |
|
xaddpnf2 |
|- ( ( C e. RR* /\ C =/= -oo ) -> ( +oo +e C ) = +oo ) |
| 95 |
92 93 94
|
syl2anc |
|- ( C e. RR -> ( +oo +e C ) = +oo ) |
| 96 |
91 95
|
sylan9eq |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( B +e C ) = +oo ) |
| 97 |
96
|
oveq2d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 98 |
|
oveq2 |
|- ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) |
| 99 |
98 31
|
sylan9eqr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( A *e B ) = +oo ) |
| 100 |
99
|
adantr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e B ) = +oo ) |
| 101 |
100
|
oveq1d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( +oo +e ( A *e C ) ) ) |
| 102 |
89 97 101
|
3eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 103 |
|
pnfxr |
|- +oo e. RR* |
| 104 |
|
pnfnemnf |
|- +oo =/= -oo |
| 105 |
|
xaddpnf1 |
|- ( ( +oo e. RR* /\ +oo =/= -oo ) -> ( +oo +e +oo ) = +oo ) |
| 106 |
103 104 105
|
mp2an |
|- ( +oo +e +oo ) = +oo |
| 107 |
31 31
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( +oo +e +oo ) ) |
| 108 |
106 107 31
|
3eqtr4a |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( A *e +oo ) ) |
| 109 |
108
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( A *e +oo ) ) |
| 110 |
98 50
|
oveqan12d |
|- ( ( B = +oo /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e +oo ) ) ) |
| 111 |
110
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e +oo ) ) ) |
| 112 |
|
oveq12 |
|- ( ( B = +oo /\ C = +oo ) -> ( B +e C ) = ( +oo +e +oo ) ) |
| 113 |
112 106
|
eqtrdi |
|- ( ( B = +oo /\ C = +oo ) -> ( B +e C ) = +oo ) |
| 114 |
113
|
oveq2d |
|- ( ( B = +oo /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 115 |
114
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 116 |
109 111 115
|
3eqtr4rd |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 117 |
|
pnfaddmnf |
|- ( +oo +e -oo ) = 0 |
| 118 |
31 55
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( +oo +e -oo ) ) |
| 119 |
|
xmul01 |
|- ( A e. RR* -> ( A *e 0 ) = 0 ) |
| 120 |
1 28 119
|
3syl |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e 0 ) = 0 ) |
| 121 |
117 118 120
|
3eqtr4a |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( A *e 0 ) ) |
| 122 |
121
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( A *e 0 ) ) |
| 123 |
98 71
|
oveqan12d |
|- ( ( B = +oo /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e -oo ) ) ) |
| 124 |
123
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e -oo ) ) ) |
| 125 |
|
oveq12 |
|- ( ( B = +oo /\ C = -oo ) -> ( B +e C ) = ( +oo +e -oo ) ) |
| 126 |
125 117
|
eqtrdi |
|- ( ( B = +oo /\ C = -oo ) -> ( B +e C ) = 0 ) |
| 127 |
126
|
oveq2d |
|- ( ( B = +oo /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 128 |
127
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 129 |
122 124 128
|
3eqtr4rd |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 130 |
77
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 131 |
102 116 129 130
|
mpjao3dan |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 132 |
55
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e -oo ) = -oo ) |
| 133 |
1
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> A e. RR ) |
| 134 |
133 82
|
sylan |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e C ) e. RR ) |
| 135 |
|
renepnf |
|- ( ( A *e C ) e. RR -> ( A *e C ) =/= +oo ) |
| 136 |
|
xaddmnf2 |
|- ( ( ( A *e C ) e. RR* /\ ( A *e C ) =/= +oo ) -> ( -oo +e ( A *e C ) ) = -oo ) |
| 137 |
84 135 136
|
syl2anc |
|- ( ( A *e C ) e. RR -> ( -oo +e ( A *e C ) ) = -oo ) |
| 138 |
134 137
|
syl |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( -oo +e ( A *e C ) ) = -oo ) |
| 139 |
132 138
|
eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e -oo ) = ( -oo +e ( A *e C ) ) ) |
| 140 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> B = -oo ) |
| 141 |
140
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( B +e C ) = ( -oo +e C ) ) |
| 142 |
|
renepnf |
|- ( C e. RR -> C =/= +oo ) |
| 143 |
|
xaddmnf2 |
|- ( ( C e. RR* /\ C =/= +oo ) -> ( -oo +e C ) = -oo ) |
| 144 |
92 142 143
|
syl2anc |
|- ( C e. RR -> ( -oo +e C ) = -oo ) |
| 145 |
141 144
|
sylan9eq |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( B +e C ) = -oo ) |
| 146 |
145
|
oveq2d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 147 |
|
oveq2 |
|- ( B = -oo -> ( A *e B ) = ( A *e -oo ) ) |
| 148 |
147 55
|
sylan9eqr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( A *e B ) = -oo ) |
| 149 |
148
|
adantr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e B ) = -oo ) |
| 150 |
149
|
oveq1d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( -oo +e ( A *e C ) ) ) |
| 151 |
139 146 150
|
3eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 152 |
55 31
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e +oo ) ) = ( -oo +e +oo ) ) |
| 153 |
|
mnfaddpnf |
|- ( -oo +e +oo ) = 0 |
| 154 |
152 153
|
eqtrdi |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e +oo ) ) = 0 ) |
| 155 |
120 154
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e 0 ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 156 |
155
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e 0 ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 157 |
|
oveq12 |
|- ( ( B = -oo /\ C = +oo ) -> ( B +e C ) = ( -oo +e +oo ) ) |
| 158 |
157 153
|
eqtrdi |
|- ( ( B = -oo /\ C = +oo ) -> ( B +e C ) = 0 ) |
| 159 |
158
|
oveq2d |
|- ( ( B = -oo /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 160 |
159
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 161 |
147 50
|
oveqan12d |
|- ( ( B = -oo /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 162 |
161
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 163 |
156 160 162
|
3eqtr4d |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 164 |
|
mnfxr |
|- -oo e. RR* |
| 165 |
|
mnfnepnf |
|- -oo =/= +oo |
| 166 |
|
xaddmnf1 |
|- ( ( -oo e. RR* /\ -oo =/= +oo ) -> ( -oo +e -oo ) = -oo ) |
| 167 |
164 165 166
|
mp2an |
|- ( -oo +e -oo ) = -oo |
| 168 |
55 55
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( -oo +e -oo ) ) |
| 169 |
167 168 55
|
3eqtr4a |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( A *e -oo ) ) |
| 170 |
169
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( A *e -oo ) ) |
| 171 |
147 71
|
oveqan12d |
|- ( ( B = -oo /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e -oo ) ) ) |
| 172 |
171
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e -oo ) ) ) |
| 173 |
|
oveq12 |
|- ( ( B = -oo /\ C = -oo ) -> ( B +e C ) = ( -oo +e -oo ) ) |
| 174 |
173 167
|
eqtrdi |
|- ( ( B = -oo /\ C = -oo ) -> ( B +e C ) = -oo ) |
| 175 |
174
|
oveq2d |
|- ( ( B = -oo /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 176 |
175
|
adantll |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 177 |
170 172 176
|
3eqtr4rd |
|- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 178 |
77
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 179 |
151 163 177 178
|
mpjao3dan |
|- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 180 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> B e. RR* ) |
| 181 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 182 |
180 181
|
sylib |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 183 |
79 131 179 182
|
mpjao3dan |
|- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |