Step |
Hyp |
Ref |
Expression |
1 |
|
xpf1o.1 |
|- ( ph -> ( x e. A |-> X ) : A -1-1-onto-> B ) |
2 |
|
xpf1o.2 |
|- ( ph -> ( y e. C |-> Y ) : C -1-1-onto-> D ) |
3 |
|
xp1st |
|- ( u e. ( A X. C ) -> ( 1st ` u ) e. A ) |
4 |
3
|
adantl |
|- ( ( ph /\ u e. ( A X. C ) ) -> ( 1st ` u ) e. A ) |
5 |
|
eqid |
|- ( x e. A |-> X ) = ( x e. A |-> X ) |
6 |
5
|
f1ompt |
|- ( ( x e. A |-> X ) : A -1-1-onto-> B <-> ( A. x e. A X e. B /\ A. z e. B E! x e. A z = X ) ) |
7 |
1 6
|
sylib |
|- ( ph -> ( A. x e. A X e. B /\ A. z e. B E! x e. A z = X ) ) |
8 |
7
|
simpld |
|- ( ph -> A. x e. A X e. B ) |
9 |
8
|
adantr |
|- ( ( ph /\ u e. ( A X. C ) ) -> A. x e. A X e. B ) |
10 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` u ) / x ]_ X |
11 |
10
|
nfel1 |
|- F/ x [_ ( 1st ` u ) / x ]_ X e. B |
12 |
|
csbeq1a |
|- ( x = ( 1st ` u ) -> X = [_ ( 1st ` u ) / x ]_ X ) |
13 |
12
|
eleq1d |
|- ( x = ( 1st ` u ) -> ( X e. B <-> [_ ( 1st ` u ) / x ]_ X e. B ) ) |
14 |
11 13
|
rspc |
|- ( ( 1st ` u ) e. A -> ( A. x e. A X e. B -> [_ ( 1st ` u ) / x ]_ X e. B ) ) |
15 |
4 9 14
|
sylc |
|- ( ( ph /\ u e. ( A X. C ) ) -> [_ ( 1st ` u ) / x ]_ X e. B ) |
16 |
|
xp2nd |
|- ( u e. ( A X. C ) -> ( 2nd ` u ) e. C ) |
17 |
16
|
adantl |
|- ( ( ph /\ u e. ( A X. C ) ) -> ( 2nd ` u ) e. C ) |
18 |
|
eqid |
|- ( y e. C |-> Y ) = ( y e. C |-> Y ) |
19 |
18
|
f1ompt |
|- ( ( y e. C |-> Y ) : C -1-1-onto-> D <-> ( A. y e. C Y e. D /\ A. w e. D E! y e. C w = Y ) ) |
20 |
2 19
|
sylib |
|- ( ph -> ( A. y e. C Y e. D /\ A. w e. D E! y e. C w = Y ) ) |
21 |
20
|
simpld |
|- ( ph -> A. y e. C Y e. D ) |
22 |
21
|
adantr |
|- ( ( ph /\ u e. ( A X. C ) ) -> A. y e. C Y e. D ) |
23 |
|
nfcsb1v |
|- F/_ y [_ ( 2nd ` u ) / y ]_ Y |
24 |
23
|
nfel1 |
|- F/ y [_ ( 2nd ` u ) / y ]_ Y e. D |
25 |
|
csbeq1a |
|- ( y = ( 2nd ` u ) -> Y = [_ ( 2nd ` u ) / y ]_ Y ) |
26 |
25
|
eleq1d |
|- ( y = ( 2nd ` u ) -> ( Y e. D <-> [_ ( 2nd ` u ) / y ]_ Y e. D ) ) |
27 |
24 26
|
rspc |
|- ( ( 2nd ` u ) e. C -> ( A. y e. C Y e. D -> [_ ( 2nd ` u ) / y ]_ Y e. D ) ) |
28 |
17 22 27
|
sylc |
|- ( ( ph /\ u e. ( A X. C ) ) -> [_ ( 2nd ` u ) / y ]_ Y e. D ) |
29 |
15 28
|
opelxpd |
|- ( ( ph /\ u e. ( A X. C ) ) -> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) ) |
30 |
29
|
ralrimiva |
|- ( ph -> A. u e. ( A X. C ) <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) ) |
31 |
7
|
simprd |
|- ( ph -> A. z e. B E! x e. A z = X ) |
32 |
31
|
r19.21bi |
|- ( ( ph /\ z e. B ) -> E! x e. A z = X ) |
33 |
|
reu6 |
|- ( E! x e. A z = X <-> E. s e. A A. x e. A ( z = X <-> x = s ) ) |
34 |
32 33
|
sylib |
|- ( ( ph /\ z e. B ) -> E. s e. A A. x e. A ( z = X <-> x = s ) ) |
35 |
20
|
simprd |
|- ( ph -> A. w e. D E! y e. C w = Y ) |
36 |
35
|
r19.21bi |
|- ( ( ph /\ w e. D ) -> E! y e. C w = Y ) |
37 |
|
reu6 |
|- ( E! y e. C w = Y <-> E. t e. C A. y e. C ( w = Y <-> y = t ) ) |
38 |
36 37
|
sylib |
|- ( ( ph /\ w e. D ) -> E. t e. C A. y e. C ( w = Y <-> y = t ) ) |
39 |
34 38
|
anim12dan |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) ) |
40 |
|
reeanv |
|- ( E. s e. A E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) <-> ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) ) |
41 |
|
pm4.38 |
|- ( ( ( z = X <-> x = s ) /\ ( w = Y <-> y = t ) ) -> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
42 |
41
|
ex |
|- ( ( z = X <-> x = s ) -> ( ( w = Y <-> y = t ) -> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
43 |
42
|
ralimdv |
|- ( ( z = X <-> x = s ) -> ( A. y e. C ( w = Y <-> y = t ) -> A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
44 |
43
|
com12 |
|- ( A. y e. C ( w = Y <-> y = t ) -> ( ( z = X <-> x = s ) -> A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
45 |
44
|
ralimdv |
|- ( A. y e. C ( w = Y <-> y = t ) -> ( A. x e. A ( z = X <-> x = s ) -> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
46 |
45
|
impcom |
|- ( ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
47 |
46
|
reximi |
|- ( E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
48 |
47
|
reximi |
|- ( E. s e. A E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
49 |
40 48
|
sylbir |
|- ( ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
50 |
39 49
|
syl |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
51 |
|
vex |
|- s e. _V |
52 |
|
vex |
|- t e. _V |
53 |
51 52
|
op1std |
|- ( u = <. s , t >. -> ( 1st ` u ) = s ) |
54 |
53
|
csbeq1d |
|- ( u = <. s , t >. -> [_ ( 1st ` u ) / x ]_ X = [_ s / x ]_ X ) |
55 |
54
|
eqeq2d |
|- ( u = <. s , t >. -> ( z = [_ ( 1st ` u ) / x ]_ X <-> z = [_ s / x ]_ X ) ) |
56 |
51 52
|
op2ndd |
|- ( u = <. s , t >. -> ( 2nd ` u ) = t ) |
57 |
56
|
csbeq1d |
|- ( u = <. s , t >. -> [_ ( 2nd ` u ) / y ]_ Y = [_ t / y ]_ Y ) |
58 |
57
|
eqeq2d |
|- ( u = <. s , t >. -> ( w = [_ ( 2nd ` u ) / y ]_ Y <-> w = [_ t / y ]_ Y ) ) |
59 |
55 58
|
anbi12d |
|- ( u = <. s , t >. -> ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) ) ) |
60 |
|
eqeq1 |
|- ( u = <. s , t >. -> ( u = v <-> <. s , t >. = v ) ) |
61 |
59 60
|
bibi12d |
|- ( u = <. s , t >. -> ( ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
62 |
61
|
ralxp |
|- ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. s e. A A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) |
63 |
|
nfv |
|- F/ s A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) |
64 |
|
nfcv |
|- F/_ x C |
65 |
|
nfcsb1v |
|- F/_ x [_ s / x ]_ X |
66 |
65
|
nfeq2 |
|- F/ x z = [_ s / x ]_ X |
67 |
|
nfv |
|- F/ x w = [_ t / y ]_ Y |
68 |
66 67
|
nfan |
|- F/ x ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) |
69 |
|
nfv |
|- F/ x <. s , t >. = v |
70 |
68 69
|
nfbi |
|- F/ x ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) |
71 |
64 70
|
nfralw |
|- F/ x A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) |
72 |
|
nfv |
|- F/ t ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) |
73 |
|
nfv |
|- F/ y z = X |
74 |
|
nfcsb1v |
|- F/_ y [_ t / y ]_ Y |
75 |
74
|
nfeq2 |
|- F/ y w = [_ t / y ]_ Y |
76 |
73 75
|
nfan |
|- F/ y ( z = X /\ w = [_ t / y ]_ Y ) |
77 |
|
nfv |
|- F/ y <. x , t >. = v |
78 |
76 77
|
nfbi |
|- F/ y ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) |
79 |
|
csbeq1a |
|- ( y = t -> Y = [_ t / y ]_ Y ) |
80 |
79
|
eqeq2d |
|- ( y = t -> ( w = Y <-> w = [_ t / y ]_ Y ) ) |
81 |
80
|
anbi2d |
|- ( y = t -> ( ( z = X /\ w = Y ) <-> ( z = X /\ w = [_ t / y ]_ Y ) ) ) |
82 |
|
opeq2 |
|- ( y = t -> <. x , y >. = <. x , t >. ) |
83 |
82
|
eqeq1d |
|- ( y = t -> ( <. x , y >. = v <-> <. x , t >. = v ) ) |
84 |
81 83
|
bibi12d |
|- ( y = t -> ( ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) ) ) |
85 |
72 78 84
|
cbvralw |
|- ( A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. t e. C ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) ) |
86 |
|
csbeq1a |
|- ( x = s -> X = [_ s / x ]_ X ) |
87 |
86
|
eqeq2d |
|- ( x = s -> ( z = X <-> z = [_ s / x ]_ X ) ) |
88 |
87
|
anbi1d |
|- ( x = s -> ( ( z = X /\ w = [_ t / y ]_ Y ) <-> ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) ) ) |
89 |
|
opeq1 |
|- ( x = s -> <. x , t >. = <. s , t >. ) |
90 |
89
|
eqeq1d |
|- ( x = s -> ( <. x , t >. = v <-> <. s , t >. = v ) ) |
91 |
88 90
|
bibi12d |
|- ( x = s -> ( ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) <-> ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
92 |
91
|
ralbidv |
|- ( x = s -> ( A. t e. C ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) <-> A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
93 |
85 92
|
bitrid |
|- ( x = s -> ( A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
94 |
63 71 93
|
cbvralw |
|- ( A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. s e. A A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) |
95 |
62 94
|
bitr4i |
|- ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) ) |
96 |
|
eqeq2 |
|- ( v = <. s , t >. -> ( <. x , y >. = v <-> <. x , y >. = <. s , t >. ) ) |
97 |
|
vex |
|- x e. _V |
98 |
|
vex |
|- y e. _V |
99 |
97 98
|
opth |
|- ( <. x , y >. = <. s , t >. <-> ( x = s /\ y = t ) ) |
100 |
96 99
|
bitrdi |
|- ( v = <. s , t >. -> ( <. x , y >. = v <-> ( x = s /\ y = t ) ) ) |
101 |
100
|
bibi2d |
|- ( v = <. s , t >. -> ( ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
102 |
101
|
2ralbidv |
|- ( v = <. s , t >. -> ( A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
103 |
95 102
|
bitrid |
|- ( v = <. s , t >. -> ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
104 |
103
|
rexxp |
|- ( E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
105 |
50 104
|
sylibr |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) ) |
106 |
|
reu6 |
|- ( E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) ) |
107 |
105 106
|
sylibr |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
108 |
107
|
ralrimivva |
|- ( ph -> A. z e. B A. w e. D E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
109 |
|
eqeq1 |
|- ( v = <. z , w >. -> ( v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> <. z , w >. = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) ) |
110 |
|
vex |
|- z e. _V |
111 |
|
vex |
|- w e. _V |
112 |
110 111
|
opth |
|- ( <. z , w >. = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
113 |
109 112
|
bitrdi |
|- ( v = <. z , w >. -> ( v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) ) |
114 |
113
|
reubidv |
|- ( v = <. z , w >. -> ( E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) ) |
115 |
114
|
ralxp |
|- ( A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> A. z e. B A. w e. D E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
116 |
108 115
|
sylibr |
|- ( ph -> A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) |
117 |
|
nfcv |
|- F/_ z <. X , Y >. |
118 |
|
nfcv |
|- F/_ w <. X , Y >. |
119 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ X |
120 |
|
nfcv |
|- F/_ x [_ w / y ]_ Y |
121 |
119 120
|
nfop |
|- F/_ x <. [_ z / x ]_ X , [_ w / y ]_ Y >. |
122 |
|
nfcv |
|- F/_ y [_ z / x ]_ X |
123 |
|
nfcsb1v |
|- F/_ y [_ w / y ]_ Y |
124 |
122 123
|
nfop |
|- F/_ y <. [_ z / x ]_ X , [_ w / y ]_ Y >. |
125 |
|
csbeq1a |
|- ( x = z -> X = [_ z / x ]_ X ) |
126 |
|
csbeq1a |
|- ( y = w -> Y = [_ w / y ]_ Y ) |
127 |
|
opeq12 |
|- ( ( X = [_ z / x ]_ X /\ Y = [_ w / y ]_ Y ) -> <. X , Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
128 |
125 126 127
|
syl2an |
|- ( ( x = z /\ y = w ) -> <. X , Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
129 |
117 118 121 124 128
|
cbvmpo |
|- ( x e. A , y e. C |-> <. X , Y >. ) = ( z e. A , w e. C |-> <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
130 |
110 111
|
op1std |
|- ( u = <. z , w >. -> ( 1st ` u ) = z ) |
131 |
130
|
csbeq1d |
|- ( u = <. z , w >. -> [_ ( 1st ` u ) / x ]_ X = [_ z / x ]_ X ) |
132 |
110 111
|
op2ndd |
|- ( u = <. z , w >. -> ( 2nd ` u ) = w ) |
133 |
132
|
csbeq1d |
|- ( u = <. z , w >. -> [_ ( 2nd ` u ) / y ]_ Y = [_ w / y ]_ Y ) |
134 |
131 133
|
opeq12d |
|- ( u = <. z , w >. -> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
135 |
134
|
mpompt |
|- ( u e. ( A X. C ) |-> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) = ( z e. A , w e. C |-> <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
136 |
129 135
|
eqtr4i |
|- ( x e. A , y e. C |-> <. X , Y >. ) = ( u e. ( A X. C ) |-> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) |
137 |
136
|
f1ompt |
|- ( ( x e. A , y e. C |-> <. X , Y >. ) : ( A X. C ) -1-1-onto-> ( B X. D ) <-> ( A. u e. ( A X. C ) <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) /\ A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) ) |
138 |
30 116 137
|
sylanbrc |
|- ( ph -> ( x e. A , y e. C |-> <. X , Y >. ) : ( A X. C ) -1-1-onto-> ( B X. D ) ) |