| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpf1o.1 |
|- ( ph -> ( x e. A |-> X ) : A -1-1-onto-> B ) |
| 2 |
|
xpf1o.2 |
|- ( ph -> ( y e. C |-> Y ) : C -1-1-onto-> D ) |
| 3 |
|
xp1st |
|- ( u e. ( A X. C ) -> ( 1st ` u ) e. A ) |
| 4 |
3
|
adantl |
|- ( ( ph /\ u e. ( A X. C ) ) -> ( 1st ` u ) e. A ) |
| 5 |
|
eqid |
|- ( x e. A |-> X ) = ( x e. A |-> X ) |
| 6 |
5
|
f1ompt |
|- ( ( x e. A |-> X ) : A -1-1-onto-> B <-> ( A. x e. A X e. B /\ A. z e. B E! x e. A z = X ) ) |
| 7 |
1 6
|
sylib |
|- ( ph -> ( A. x e. A X e. B /\ A. z e. B E! x e. A z = X ) ) |
| 8 |
7
|
simpld |
|- ( ph -> A. x e. A X e. B ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ u e. ( A X. C ) ) -> A. x e. A X e. B ) |
| 10 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` u ) / x ]_ X |
| 11 |
10
|
nfel1 |
|- F/ x [_ ( 1st ` u ) / x ]_ X e. B |
| 12 |
|
csbeq1a |
|- ( x = ( 1st ` u ) -> X = [_ ( 1st ` u ) / x ]_ X ) |
| 13 |
12
|
eleq1d |
|- ( x = ( 1st ` u ) -> ( X e. B <-> [_ ( 1st ` u ) / x ]_ X e. B ) ) |
| 14 |
11 13
|
rspc |
|- ( ( 1st ` u ) e. A -> ( A. x e. A X e. B -> [_ ( 1st ` u ) / x ]_ X e. B ) ) |
| 15 |
4 9 14
|
sylc |
|- ( ( ph /\ u e. ( A X. C ) ) -> [_ ( 1st ` u ) / x ]_ X e. B ) |
| 16 |
|
xp2nd |
|- ( u e. ( A X. C ) -> ( 2nd ` u ) e. C ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ u e. ( A X. C ) ) -> ( 2nd ` u ) e. C ) |
| 18 |
|
eqid |
|- ( y e. C |-> Y ) = ( y e. C |-> Y ) |
| 19 |
18
|
f1ompt |
|- ( ( y e. C |-> Y ) : C -1-1-onto-> D <-> ( A. y e. C Y e. D /\ A. w e. D E! y e. C w = Y ) ) |
| 20 |
2 19
|
sylib |
|- ( ph -> ( A. y e. C Y e. D /\ A. w e. D E! y e. C w = Y ) ) |
| 21 |
20
|
simpld |
|- ( ph -> A. y e. C Y e. D ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ u e. ( A X. C ) ) -> A. y e. C Y e. D ) |
| 23 |
|
nfcsb1v |
|- F/_ y [_ ( 2nd ` u ) / y ]_ Y |
| 24 |
23
|
nfel1 |
|- F/ y [_ ( 2nd ` u ) / y ]_ Y e. D |
| 25 |
|
csbeq1a |
|- ( y = ( 2nd ` u ) -> Y = [_ ( 2nd ` u ) / y ]_ Y ) |
| 26 |
25
|
eleq1d |
|- ( y = ( 2nd ` u ) -> ( Y e. D <-> [_ ( 2nd ` u ) / y ]_ Y e. D ) ) |
| 27 |
24 26
|
rspc |
|- ( ( 2nd ` u ) e. C -> ( A. y e. C Y e. D -> [_ ( 2nd ` u ) / y ]_ Y e. D ) ) |
| 28 |
17 22 27
|
sylc |
|- ( ( ph /\ u e. ( A X. C ) ) -> [_ ( 2nd ` u ) / y ]_ Y e. D ) |
| 29 |
15 28
|
opelxpd |
|- ( ( ph /\ u e. ( A X. C ) ) -> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) ) |
| 30 |
29
|
ralrimiva |
|- ( ph -> A. u e. ( A X. C ) <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) ) |
| 31 |
7
|
simprd |
|- ( ph -> A. z e. B E! x e. A z = X ) |
| 32 |
31
|
r19.21bi |
|- ( ( ph /\ z e. B ) -> E! x e. A z = X ) |
| 33 |
|
reu6 |
|- ( E! x e. A z = X <-> E. s e. A A. x e. A ( z = X <-> x = s ) ) |
| 34 |
32 33
|
sylib |
|- ( ( ph /\ z e. B ) -> E. s e. A A. x e. A ( z = X <-> x = s ) ) |
| 35 |
20
|
simprd |
|- ( ph -> A. w e. D E! y e. C w = Y ) |
| 36 |
35
|
r19.21bi |
|- ( ( ph /\ w e. D ) -> E! y e. C w = Y ) |
| 37 |
|
reu6 |
|- ( E! y e. C w = Y <-> E. t e. C A. y e. C ( w = Y <-> y = t ) ) |
| 38 |
36 37
|
sylib |
|- ( ( ph /\ w e. D ) -> E. t e. C A. y e. C ( w = Y <-> y = t ) ) |
| 39 |
34 38
|
anim12dan |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) ) |
| 40 |
|
reeanv |
|- ( E. s e. A E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) <-> ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) ) |
| 41 |
|
pm4.38 |
|- ( ( ( z = X <-> x = s ) /\ ( w = Y <-> y = t ) ) -> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
| 42 |
41
|
ex |
|- ( ( z = X <-> x = s ) -> ( ( w = Y <-> y = t ) -> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
| 43 |
42
|
ralimdv |
|- ( ( z = X <-> x = s ) -> ( A. y e. C ( w = Y <-> y = t ) -> A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
| 44 |
43
|
com12 |
|- ( A. y e. C ( w = Y <-> y = t ) -> ( ( z = X <-> x = s ) -> A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
| 45 |
44
|
ralimdv |
|- ( A. y e. C ( w = Y <-> y = t ) -> ( A. x e. A ( z = X <-> x = s ) -> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
| 46 |
45
|
impcom |
|- ( ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
| 47 |
46
|
reximi |
|- ( E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
| 48 |
47
|
reximi |
|- ( E. s e. A E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
| 49 |
40 48
|
sylbir |
|- ( ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
| 50 |
39 49
|
syl |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
| 51 |
|
vex |
|- s e. _V |
| 52 |
|
vex |
|- t e. _V |
| 53 |
51 52
|
op1std |
|- ( u = <. s , t >. -> ( 1st ` u ) = s ) |
| 54 |
53
|
csbeq1d |
|- ( u = <. s , t >. -> [_ ( 1st ` u ) / x ]_ X = [_ s / x ]_ X ) |
| 55 |
54
|
eqeq2d |
|- ( u = <. s , t >. -> ( z = [_ ( 1st ` u ) / x ]_ X <-> z = [_ s / x ]_ X ) ) |
| 56 |
51 52
|
op2ndd |
|- ( u = <. s , t >. -> ( 2nd ` u ) = t ) |
| 57 |
56
|
csbeq1d |
|- ( u = <. s , t >. -> [_ ( 2nd ` u ) / y ]_ Y = [_ t / y ]_ Y ) |
| 58 |
57
|
eqeq2d |
|- ( u = <. s , t >. -> ( w = [_ ( 2nd ` u ) / y ]_ Y <-> w = [_ t / y ]_ Y ) ) |
| 59 |
55 58
|
anbi12d |
|- ( u = <. s , t >. -> ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) ) ) |
| 60 |
|
eqeq1 |
|- ( u = <. s , t >. -> ( u = v <-> <. s , t >. = v ) ) |
| 61 |
59 60
|
bibi12d |
|- ( u = <. s , t >. -> ( ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
| 62 |
61
|
ralxp |
|- ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. s e. A A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) |
| 63 |
|
nfv |
|- F/ s A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) |
| 64 |
|
nfcv |
|- F/_ x C |
| 65 |
|
nfcsb1v |
|- F/_ x [_ s / x ]_ X |
| 66 |
65
|
nfeq2 |
|- F/ x z = [_ s / x ]_ X |
| 67 |
|
nfv |
|- F/ x w = [_ t / y ]_ Y |
| 68 |
66 67
|
nfan |
|- F/ x ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) |
| 69 |
|
nfv |
|- F/ x <. s , t >. = v |
| 70 |
68 69
|
nfbi |
|- F/ x ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) |
| 71 |
64 70
|
nfralw |
|- F/ x A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) |
| 72 |
|
nfv |
|- F/ t ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) |
| 73 |
|
nfv |
|- F/ y z = X |
| 74 |
|
nfcsb1v |
|- F/_ y [_ t / y ]_ Y |
| 75 |
74
|
nfeq2 |
|- F/ y w = [_ t / y ]_ Y |
| 76 |
73 75
|
nfan |
|- F/ y ( z = X /\ w = [_ t / y ]_ Y ) |
| 77 |
|
nfv |
|- F/ y <. x , t >. = v |
| 78 |
76 77
|
nfbi |
|- F/ y ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) |
| 79 |
|
csbeq1a |
|- ( y = t -> Y = [_ t / y ]_ Y ) |
| 80 |
79
|
eqeq2d |
|- ( y = t -> ( w = Y <-> w = [_ t / y ]_ Y ) ) |
| 81 |
80
|
anbi2d |
|- ( y = t -> ( ( z = X /\ w = Y ) <-> ( z = X /\ w = [_ t / y ]_ Y ) ) ) |
| 82 |
|
opeq2 |
|- ( y = t -> <. x , y >. = <. x , t >. ) |
| 83 |
82
|
eqeq1d |
|- ( y = t -> ( <. x , y >. = v <-> <. x , t >. = v ) ) |
| 84 |
81 83
|
bibi12d |
|- ( y = t -> ( ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) ) ) |
| 85 |
72 78 84
|
cbvralw |
|- ( A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. t e. C ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) ) |
| 86 |
|
csbeq1a |
|- ( x = s -> X = [_ s / x ]_ X ) |
| 87 |
86
|
eqeq2d |
|- ( x = s -> ( z = X <-> z = [_ s / x ]_ X ) ) |
| 88 |
87
|
anbi1d |
|- ( x = s -> ( ( z = X /\ w = [_ t / y ]_ Y ) <-> ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) ) ) |
| 89 |
|
opeq1 |
|- ( x = s -> <. x , t >. = <. s , t >. ) |
| 90 |
89
|
eqeq1d |
|- ( x = s -> ( <. x , t >. = v <-> <. s , t >. = v ) ) |
| 91 |
88 90
|
bibi12d |
|- ( x = s -> ( ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) <-> ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
| 92 |
91
|
ralbidv |
|- ( x = s -> ( A. t e. C ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) <-> A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
| 93 |
85 92
|
bitrid |
|- ( x = s -> ( A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) |
| 94 |
63 71 93
|
cbvralw |
|- ( A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. s e. A A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) |
| 95 |
62 94
|
bitr4i |
|- ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) ) |
| 96 |
|
eqeq2 |
|- ( v = <. s , t >. -> ( <. x , y >. = v <-> <. x , y >. = <. s , t >. ) ) |
| 97 |
|
vex |
|- x e. _V |
| 98 |
|
vex |
|- y e. _V |
| 99 |
97 98
|
opth |
|- ( <. x , y >. = <. s , t >. <-> ( x = s /\ y = t ) ) |
| 100 |
96 99
|
bitrdi |
|- ( v = <. s , t >. -> ( <. x , y >. = v <-> ( x = s /\ y = t ) ) ) |
| 101 |
100
|
bibi2d |
|- ( v = <. s , t >. -> ( ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
| 102 |
101
|
2ralbidv |
|- ( v = <. s , t >. -> ( A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
| 103 |
95 102
|
bitrid |
|- ( v = <. s , t >. -> ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) |
| 104 |
103
|
rexxp |
|- ( E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) |
| 105 |
50 104
|
sylibr |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) ) |
| 106 |
|
reu6 |
|- ( E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) ) |
| 107 |
105 106
|
sylibr |
|- ( ( ph /\ ( z e. B /\ w e. D ) ) -> E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
| 108 |
107
|
ralrimivva |
|- ( ph -> A. z e. B A. w e. D E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
| 109 |
|
eqeq1 |
|- ( v = <. z , w >. -> ( v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> <. z , w >. = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) ) |
| 110 |
|
vex |
|- z e. _V |
| 111 |
|
vex |
|- w e. _V |
| 112 |
110 111
|
opth |
|- ( <. z , w >. = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
| 113 |
109 112
|
bitrdi |
|- ( v = <. z , w >. -> ( v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) ) |
| 114 |
113
|
reubidv |
|- ( v = <. z , w >. -> ( E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) ) |
| 115 |
114
|
ralxp |
|- ( A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> A. z e. B A. w e. D E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) |
| 116 |
108 115
|
sylibr |
|- ( ph -> A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) |
| 117 |
|
nfcv |
|- F/_ z <. X , Y >. |
| 118 |
|
nfcv |
|- F/_ w <. X , Y >. |
| 119 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ X |
| 120 |
|
nfcv |
|- F/_ x [_ w / y ]_ Y |
| 121 |
119 120
|
nfop |
|- F/_ x <. [_ z / x ]_ X , [_ w / y ]_ Y >. |
| 122 |
|
nfcv |
|- F/_ y [_ z / x ]_ X |
| 123 |
|
nfcsb1v |
|- F/_ y [_ w / y ]_ Y |
| 124 |
122 123
|
nfop |
|- F/_ y <. [_ z / x ]_ X , [_ w / y ]_ Y >. |
| 125 |
|
csbeq1a |
|- ( x = z -> X = [_ z / x ]_ X ) |
| 126 |
|
csbeq1a |
|- ( y = w -> Y = [_ w / y ]_ Y ) |
| 127 |
|
opeq12 |
|- ( ( X = [_ z / x ]_ X /\ Y = [_ w / y ]_ Y ) -> <. X , Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
| 128 |
125 126 127
|
syl2an |
|- ( ( x = z /\ y = w ) -> <. X , Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
| 129 |
117 118 121 124 128
|
cbvmpo |
|- ( x e. A , y e. C |-> <. X , Y >. ) = ( z e. A , w e. C |-> <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
| 130 |
110 111
|
op1std |
|- ( u = <. z , w >. -> ( 1st ` u ) = z ) |
| 131 |
130
|
csbeq1d |
|- ( u = <. z , w >. -> [_ ( 1st ` u ) / x ]_ X = [_ z / x ]_ X ) |
| 132 |
110 111
|
op2ndd |
|- ( u = <. z , w >. -> ( 2nd ` u ) = w ) |
| 133 |
132
|
csbeq1d |
|- ( u = <. z , w >. -> [_ ( 2nd ` u ) / y ]_ Y = [_ w / y ]_ Y ) |
| 134 |
131 133
|
opeq12d |
|- ( u = <. z , w >. -> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
| 135 |
134
|
mpompt |
|- ( u e. ( A X. C ) |-> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) = ( z e. A , w e. C |-> <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) |
| 136 |
129 135
|
eqtr4i |
|- ( x e. A , y e. C |-> <. X , Y >. ) = ( u e. ( A X. C ) |-> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) |
| 137 |
136
|
f1ompt |
|- ( ( x e. A , y e. C |-> <. X , Y >. ) : ( A X. C ) -1-1-onto-> ( B X. D ) <-> ( A. u e. ( A X. C ) <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) /\ A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) ) |
| 138 |
30 116 137
|
sylanbrc |
|- ( ph -> ( x e. A , y e. C |-> <. X , Y >. ) : ( A X. C ) -1-1-onto-> ( B X. D ) ) |