Metamath Proof Explorer


Theorem 0frgp

Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses 0frgp.g G=freeGrp
0frgp.b B=BaseG
Assertion 0frgp B1𝑜

Proof

Step Hyp Ref Expression
1 0frgp.g G=freeGrp
2 0frgp.b B=BaseG
3 0ex V
4 1 frgpgrp VGGrp
5 3 4 ax-mp GGrp
6 f0 :B
7 eqid ~FG=~FG
8 eqid varFGrp=varFGrp
9 7 8 1 2 vrgpf VvarFGrp:B
10 ffn varFGrp:BvarFGrpFn
11 3 9 10 mp2b varFGrpFn
12 fn0 varFGrpFnvarFGrp=
13 11 12 mpbi varFGrp=
14 13 eqcomi =varFGrp
15 1 2 14 frgpup3 GGrpV:B∃!fGGrpHomGf=
16 5 3 6 15 mp3an ∃!fGGrpHomGf=
17 reurmo ∃!fGGrpHomGf=*fGGrpHomGf=
18 16 17 ax-mp *fGGrpHomGf=
19 2 idghm GGrpIBGGrpHomG
20 5 19 ax-mp IBGGrpHomG
21 tru
22 20 21 pm3.2i IBGGrpHomG
23 eqid 0G=0G
24 23 2 0ghm GGrpGGrpB×0GGGrpHomG
25 5 5 24 mp2an B×0GGGrpHomG
26 25 21 pm3.2i B×0GGGrpHomG
27 co02 f=
28 27 bitru f=
29 28 a1i f=IBf=
30 28 a1i f=B×0Gf=
31 29 30 rmoi *fGGrpHomGf=IBGGrpHomGB×0GGGrpHomGIB=B×0G
32 18 22 26 31 mp3an IB=B×0G
33 mptresid IB=xBx
34 fconstmpt B×0G=xB0G
35 32 33 34 3eqtr3i xBx=xB0G
36 mpteqb xBxBxBx=xB0GxBx=0G
37 id xBxB
38 36 37 mprg xBx=xB0GxBx=0G
39 35 38 mpbi xBx=0G
40 39 rspec xBx=0G
41 velsn x0Gx=0G
42 40 41 sylibr xBx0G
43 42 ssriv B0G
44 2 23 grpidcl GGrp0GB
45 5 44 ax-mp 0GB
46 snssi 0GB0GB
47 45 46 ax-mp 0GB
48 43 47 eqssi B=0G
49 fvex 0GV
50 49 ensn1 0G1𝑜
51 48 50 eqbrtri B1𝑜