Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1pthon2v.v | |
|
1pthon2v.e | |
||
Assertion | 1pthon2v | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pthon2v.v | |
|
2 | 1pthon2v.e | |
|
3 | simpl | |
|
4 | 3 | anim2i | |
5 | 4 | 3adant3 | |
6 | 5 | adantl | |
7 | 1 | 0pthonv | |
8 | 6 7 | simpl2im | |
9 | oveq2 | |
|
10 | 9 | eqcoms | |
11 | 10 | breqd | |
12 | 11 | 2exbidv | |
13 | 12 | adantr | |
14 | 8 13 | mpbird | |
15 | 14 | ex | |
16 | 2 | eleq2i | |
17 | eqid | |
|
18 | 17 | uhgredgiedgb | |
19 | 16 18 | bitrid | |
20 | 19 | 3ad2ant1 | |
21 | s1cli | |
|
22 | s2cli | |
|
23 | 21 22 | pm3.2i | |
24 | eqid | |
|
25 | eqid | |
|
26 | simpl2l | |
|
27 | simpl2r | |
|
28 | eqneqall | |
|
29 | 28 | com12 | |
30 | 29 | 3ad2ant3 | |
31 | 30 | adantr | |
32 | 31 | imp | |
33 | sseq2 | |
|
34 | 33 | adantl | |
35 | 34 | biimpa | |
36 | 35 | adantl | |
37 | 36 | adantr | |
38 | 24 25 26 27 32 37 1 17 | 1pthond | |
39 | breq12 | |
|
40 | 39 | spc2egv | |
41 | 23 38 40 | mpsyl | |
42 | 41 | exp44 | |
43 | 42 | rexlimdv | |
44 | 20 43 | sylbid | |
45 | 44 | rexlimdv | |
46 | 45 | 3exp | |
47 | 46 | com34 | |
48 | 47 | 3imp | |
49 | 48 | com12 | |
50 | 15 49 | pm2.61ine | |