Metamath Proof Explorer


Theorem 1pthon2v

Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1pthon2v.v V=VtxG
1pthon2v.e E=EdgG
Assertion 1pthon2v GUHGraphAVBVeEABefpfAPathsOnGBp

Proof

Step Hyp Ref Expression
1 1pthon2v.v V=VtxG
2 1pthon2v.e E=EdgG
3 simpl AVBVAV
4 3 anim2i GUHGraphAVBVGUHGraphAV
5 4 3adant3 GUHGraphAVBVeEABeGUHGraphAV
6 5 adantl A=BGUHGraphAVBVeEABeGUHGraphAV
7 1 0pthonv AVfpfAPathsOnGAp
8 6 7 simpl2im A=BGUHGraphAVBVeEABefpfAPathsOnGAp
9 oveq2 B=AAPathsOnGB=APathsOnGA
10 9 eqcoms A=BAPathsOnGB=APathsOnGA
11 10 breqd A=BfAPathsOnGBpfAPathsOnGAp
12 11 2exbidv A=BfpfAPathsOnGBpfpfAPathsOnGAp
13 12 adantr A=BGUHGraphAVBVeEABefpfAPathsOnGBpfpfAPathsOnGAp
14 8 13 mpbird A=BGUHGraphAVBVeEABefpfAPathsOnGBp
15 14 ex A=BGUHGraphAVBVeEABefpfAPathsOnGBp
16 2 eleq2i eEeEdgG
17 eqid iEdgG=iEdgG
18 17 uhgredgiedgb GUHGrapheEdgGidomiEdgGe=iEdgGi
19 16 18 bitrid GUHGrapheEidomiEdgGe=iEdgGi
20 19 3ad2ant1 GUHGraphAVBVABeEidomiEdgGe=iEdgGi
21 s1cli ⟨“i”⟩WordV
22 s2cli ⟨“AB”⟩WordV
23 21 22 pm3.2i ⟨“i”⟩WordV⟨“AB”⟩WordV
24 eqid ⟨“AB”⟩=⟨“AB”⟩
25 eqid ⟨“i”⟩=⟨“i”⟩
26 simpl2l GUHGraphAVBVABidomiEdgGe=iEdgGiABeAV
27 simpl2r GUHGraphAVBVABidomiEdgGe=iEdgGiABeBV
28 eqneqall A=BABiEdgGi=A
29 28 com12 ABA=BiEdgGi=A
30 29 3ad2ant3 GUHGraphAVBVABA=BiEdgGi=A
31 30 adantr GUHGraphAVBVABidomiEdgGe=iEdgGiABeA=BiEdgGi=A
32 31 imp GUHGraphAVBVABidomiEdgGe=iEdgGiABeA=BiEdgGi=A
33 sseq2 e=iEdgGiABeABiEdgGi
34 33 adantl idomiEdgGe=iEdgGiABeABiEdgGi
35 34 biimpa idomiEdgGe=iEdgGiABeABiEdgGi
36 35 adantl GUHGraphAVBVABidomiEdgGe=iEdgGiABeABiEdgGi
37 36 adantr GUHGraphAVBVABidomiEdgGe=iEdgGiABeABABiEdgGi
38 24 25 26 27 32 37 1 17 1pthond GUHGraphAVBVABidomiEdgGe=iEdgGiABe⟨“i”⟩APathsOnGB⟨“AB”⟩
39 breq12 f=⟨“i”⟩p=⟨“AB”⟩fAPathsOnGBp⟨“i”⟩APathsOnGB⟨“AB”⟩
40 39 spc2egv ⟨“i”⟩WordV⟨“AB”⟩WordV⟨“i”⟩APathsOnGB⟨“AB”⟩fpfAPathsOnGBp
41 23 38 40 mpsyl GUHGraphAVBVABidomiEdgGe=iEdgGiABefpfAPathsOnGBp
42 41 exp44 GUHGraphAVBVABidomiEdgGe=iEdgGiABefpfAPathsOnGBp
43 42 rexlimdv GUHGraphAVBVABidomiEdgGe=iEdgGiABefpfAPathsOnGBp
44 20 43 sylbid GUHGraphAVBVABeEABefpfAPathsOnGBp
45 44 rexlimdv GUHGraphAVBVABeEABefpfAPathsOnGBp
46 45 3exp GUHGraphAVBVABeEABefpfAPathsOnGBp
47 46 com34 GUHGraphAVBVeEABeABfpfAPathsOnGBp
48 47 3imp GUHGraphAVBVeEABeABfpfAPathsOnGBp
49 48 com12 ABGUHGraphAVBVeEABefpfAPathsOnGBp
50 15 49 pm2.61ine GUHGraphAVBVeEABefpfAPathsOnGBp