Metamath Proof Explorer


Theorem 2itscplem3

Description: Lemma D for 2itscp . (Contributed by AV, 4-Mar-2023)

Ref Expression
Hypotheses 2itscp.a φA
2itscp.b φB
2itscp.x φX
2itscp.y φY
2itscp.d D=XA
2itscp.e E=BY
2itscp.c C=DB+EA
2itscp.r φR
2itscplem3.q Q=E2+D2
2itscplem3.s S=R2QC2
Assertion 2itscplem3 φS=E2R2A2+D2R2B2-2DAEB

Proof

Step Hyp Ref Expression
1 2itscp.a φA
2 2itscp.b φB
3 2itscp.x φX
4 2itscp.y φY
5 2itscp.d D=XA
6 2itscp.e E=BY
7 2itscp.c C=DB+EA
8 2itscp.r φR
9 2itscplem3.q Q=E2+D2
10 2itscplem3.s S=R2QC2
11 10 a1i φS=R2QC2
12 9 a1i φQ=E2+D2
13 12 oveq2d φR2Q=R2E2+D2
14 8 recnd φR
15 14 sqcld φR2
16 2 recnd φB
17 4 recnd φY
18 16 17 subcld φBY
19 6 18 eqeltrid φE
20 19 sqcld φE2
21 3 recnd φX
22 1 recnd φA
23 21 22 subcld φXA
24 5 23 eqeltrid φD
25 24 sqcld φD2
26 20 25 addcld φE2+D2
27 15 26 mulcomd φR2E2+D2=E2+D2R2
28 20 25 15 adddird φE2+D2R2=E2R2+D2R2
29 13 27 28 3eqtrd φR2Q=E2R2+D2R2
30 1 2 3 4 5 6 7 2itscplem2 φC2=D2B2+2DAEB+E2A2
31 29 30 oveq12d φR2QC2=E2R2+D2R2-D2B2+2DAEB+E2A2
32 20 15 mulcld φE2R2
33 25 15 mulcld φD2R2
34 32 33 addcld φE2R2+D2R2
35 16 sqcld φB2
36 25 35 mulcld φD2B2
37 2cnd φ2
38 24 22 mulcld φDA
39 19 16 mulcld φEB
40 38 39 mulcld φDAEB
41 37 40 mulcld φ2DAEB
42 34 36 41 subsub4d φE2R2+D2R2-D2B2-2DAEB=E2R2+D2R2-D2B2+2DAEB
43 42 eqcomd φE2R2+D2R2-D2B2+2DAEB=E2R2+D2R2-D2B2-2DAEB
44 43 oveq1d φE2R2+D2R2-D2B2+2DAEB-E2A2=E2R2+D2R2-D2B2-2DAEB-E2A2
45 34 36 subcld φE2R2+D2R2-D2B2
46 22 sqcld φA2
47 20 46 mulcld φE2A2
48 45 41 47 sub32d φE2R2+D2R2-D2B2-2DAEB-E2A2=E2R2+D2R2-D2B2-E2A2-2DAEB
49 44 48 eqtrd φE2R2+D2R2-D2B2+2DAEB-E2A2=E2R2+D2R2-D2B2-E2A2-2DAEB
50 36 41 addcld φD2B2+2DAEB
51 34 50 47 subsub4d φE2R2+D2R2-D2B2+2DAEB-E2A2=E2R2+D2R2-D2B2+2DAEB+E2A2
52 32 33 36 addsubassd φE2R2+D2R2-D2B2=E2R2+D2R2-D2B2
53 25 15 35 subdid φD2R2B2=D2R2D2B2
54 53 eqcomd φD2R2D2B2=D2R2B2
55 54 oveq2d φE2R2+D2R2-D2B2=E2R2+D2R2B2
56 52 55 eqtrd φE2R2+D2R2-D2B2=E2R2+D2R2B2
57 56 oveq1d φE2R2+D2R2-D2B2-E2A2=E2R2+D2R2B2-E2A2
58 15 35 subcld φR2B2
59 25 58 mulcld φD2R2B2
60 32 59 47 addsubd φE2R2+D2R2B2-E2A2=E2R2-E2A2+D2R2B2
61 20 15 46 subdid φE2R2A2=E2R2E2A2
62 61 eqcomd φE2R2E2A2=E2R2A2
63 62 oveq1d φE2R2-E2A2+D2R2B2=E2R2A2+D2R2B2
64 57 60 63 3eqtrd φE2R2+D2R2-D2B2-E2A2=E2R2A2+D2R2B2
65 64 oveq1d φE2R2+D2R2-D2B2-E2A2-2DAEB=E2R2A2+D2R2B2-2DAEB
66 49 51 65 3eqtr3d φE2R2+D2R2-D2B2+2DAEB+E2A2=E2R2A2+D2R2B2-2DAEB
67 11 31 66 3eqtrd φS=E2R2A2+D2R2B2-2DAEB