Description: Lemma 2 for 2lgslem1 . (Contributed by AV, 18-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2lgslem1b.i | |
|
2lgslem1b.f | |
||
Assertion | 2lgslem1b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgslem1b.i | |
|
2 | 2lgslem1b.f | |
|
3 | eqeq1 | |
|
4 | 3 | rexbidv | |
5 | elfzelz | |
|
6 | 5 1 | eleq2s | |
7 | 2z | |
|
8 | 7 | a1i | |
9 | 6 8 | zmulcld | |
10 | id | |
|
11 | oveq1 | |
|
12 | 11 | eqeq2d | |
13 | 12 | adantl | |
14 | eqidd | |
|
15 | 10 13 14 | rspcedvd | |
16 | 4 9 15 | elrabd | |
17 | 2 16 | fmpti | |
18 | oveq1 | |
|
19 | simpl | |
|
20 | ovexd | |
|
21 | 2 18 19 20 | fvmptd3 | |
22 | oveq1 | |
|
23 | simpr | |
|
24 | ovexd | |
|
25 | 2 22 23 24 | fvmptd3 | |
26 | 21 25 | eqeq12d | |
27 | elfzelz | |
|
28 | 27 1 | eleq2s | |
29 | 28 | zcnd | |
30 | 29 | adantr | |
31 | elfzelz | |
|
32 | 31 1 | eleq2s | |
33 | 32 | zcnd | |
34 | 33 | adantl | |
35 | 2cnd | |
|
36 | 2ne0 | |
|
37 | 36 | a1i | |
38 | 30 34 35 37 | mulcan2d | |
39 | 38 | biimpd | |
40 | 26 39 | sylbid | |
41 | 40 | rgen2 | |
42 | dff13 | |
|
43 | 17 41 42 | mpbir2an | |
44 | oveq1 | |
|
45 | 44 | eqeq2d | |
46 | 45 | cbvrexvw | |
47 | elfzelz | |
|
48 | 7 | a1i | |
49 | 47 48 | zmulcld | |
50 | 49 1 | eleq2s | |
51 | eleq1 | |
|
52 | 50 51 | syl5ibrcom | |
53 | 52 | rexlimiv | |
54 | 53 | pm4.71ri | |
55 | 46 54 | bitri | |
56 | 55 | abbii | |
57 | 2 | rnmpt | |
58 | df-rab | |
|
59 | 56 57 58 | 3eqtr4i | |
60 | dff1o5 | |
|
61 | 43 59 60 | mpbir2an | |