Metamath Proof Explorer


Theorem 2lgslem1b

Description: Lemma 2 for 2lgslem1 . (Contributed by AV, 18-Jun-2021)

Ref Expression
Hypotheses 2lgslem1b.i I=AB
2lgslem1b.f F=jIj2
Assertion 2lgslem1b F:I1-1 ontox|iIx=i2

Proof

Step Hyp Ref Expression
1 2lgslem1b.i I=AB
2 2lgslem1b.f F=jIj2
3 eqeq1 x=j2x=i2j2=i2
4 3 rexbidv x=j2iIx=i2iIj2=i2
5 elfzelz jABj
6 5 1 eleq2s jIj
7 2z 2
8 7 a1i jI2
9 6 8 zmulcld jIj2
10 id jIjI
11 oveq1 i=ji2=j2
12 11 eqeq2d i=jj2=i2j2=j2
13 12 adantl jIi=jj2=i2j2=j2
14 eqidd jIj2=j2
15 10 13 14 rspcedvd jIiIj2=i2
16 4 9 15 elrabd jIj2x|iIx=i2
17 2 16 fmpti F:Ix|iIx=i2
18 oveq1 j=yj2=y2
19 simpl yIzIyI
20 ovexd yIzIy2V
21 2 18 19 20 fvmptd3 yIzIFy=y2
22 oveq1 j=zj2=z2
23 simpr yIzIzI
24 ovexd yIzIz2V
25 2 22 23 24 fvmptd3 yIzIFz=z2
26 21 25 eqeq12d yIzIFy=Fzy2=z2
27 elfzelz yABy
28 27 1 eleq2s yIy
29 28 zcnd yIy
30 29 adantr yIzIy
31 elfzelz zABz
32 31 1 eleq2s zIz
33 32 zcnd zIz
34 33 adantl yIzIz
35 2cnd yIzI2
36 2ne0 20
37 36 a1i yIzI20
38 30 34 35 37 mulcan2d yIzIy2=z2y=z
39 38 biimpd yIzIy2=z2y=z
40 26 39 sylbid yIzIFy=Fzy=z
41 40 rgen2 yIzIFy=Fzy=z
42 dff13 F:I1-1x|iIx=i2F:Ix|iIx=i2yIzIFy=Fzy=z
43 17 41 42 mpbir2an F:I1-1x|iIx=i2
44 oveq1 j=ij2=i2
45 44 eqeq2d j=ix=j2x=i2
46 45 cbvrexvw jIx=j2iIx=i2
47 elfzelz iABi
48 7 a1i iAB2
49 47 48 zmulcld iABi2
50 49 1 eleq2s iIi2
51 eleq1 x=i2xi2
52 50 51 syl5ibrcom iIx=i2x
53 52 rexlimiv iIx=i2x
54 53 pm4.71ri iIx=i2xiIx=i2
55 46 54 bitri jIx=j2xiIx=i2
56 55 abbii x|jIx=j2=x|xiIx=i2
57 2 rnmpt ranF=x|jIx=j2
58 df-rab x|iIx=i2=x|xiIx=i2
59 56 57 58 3eqtr4i ranF=x|iIx=i2
60 dff1o5 F:I1-1 ontox|iIx=i2F:I1-1x|iIx=i2ranF=x|iIx=i2
61 43 59 60 mpbir2an F:I1-1 ontox|iIx=i2