Metamath Proof Explorer


Theorem 2nd2val

Description: Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Assertion 2nd2val xyz|z=yA=2ndA

Proof

Step Hyp Ref Expression
1 elvv AV×VwvA=wv
2 fveq2 A=wvxyz|z=yA=xyz|z=ywv
3 df-ov wxyz|z=yv=xyz|z=ywv
4 simpr x=wy=vy=v
5 mpov xV,yVy=xyz|z=y
6 5 eqcomi xyz|z=y=xV,yVy
7 vex vV
8 4 6 7 ovmpoa wVvVwxyz|z=yv=v
9 8 el2v wxyz|z=yv=v
10 3 9 eqtr3i xyz|z=ywv=v
11 2 10 eqtrdi A=wvxyz|z=yA=v
12 vex wV
13 12 7 op2ndd A=wv2ndA=v
14 11 13 eqtr4d A=wvxyz|z=yA=2ndA
15 14 exlimivv wvA=wvxyz|z=yA=2ndA
16 1 15 sylbi AV×Vxyz|z=yA=2ndA
17 vex xV
18 vex yV
19 17 18 pm3.2i xVyV
20 ax6ev zz=y
21 19 20 2th xVyVzz=y
22 21 opabbii xy|xVyV=xy|zz=y
23 df-xp V×V=xy|xVyV
24 dmoprab domxyz|z=y=xy|zz=y
25 22 23 24 3eqtr4ri domxyz|z=y=V×V
26 25 eleq2i Adomxyz|z=yAV×V
27 ndmfv ¬Adomxyz|z=yxyz|z=yA=
28 26 27 sylnbir ¬AV×Vxyz|z=yA=
29 rnsnn0 AV×VranA
30 29 biimpri ranAAV×V
31 30 necon1bi ¬AV×VranA=
32 31 unieqd ¬AV×VranA=
33 uni0 =
34 32 33 eqtrdi ¬AV×VranA=
35 28 34 eqtr4d ¬AV×Vxyz|z=yA=ranA
36 2ndval 2ndA=ranA
37 35 36 eqtr4di ¬AV×Vxyz|z=yA=2ndA
38 16 37 pm2.61i xyz|z=yA=2ndA