Metamath Proof Explorer


Theorem 2nodd

Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e O=z|xz=2x+1
Assertion 2nodd 2O

Proof

Step Hyp Ref Expression
1 oddinmgm.e O=z|xz=2x+1
2 halfnz ¬12
3 eleq1 12=x12x
4 2 3 mtbii 12=x¬x
5 4 con2i x¬12=x
6 1cnd x1
7 zcn xx
8 2cnd x2
9 2ne0 20
10 9 a1i x20
11 6 7 8 10 divmul2d x12=x1=2x
12 5 11 mtbid x¬1=2x
13 eqcom 2=2x+12x+1=2
14 13 a1i x2=2x+12x+1=2
15 8 7 mulcld x2x
16 subadd2 212x21=2x2x+1=2
17 16 bicomd 212x2x+1=221=2x
18 8 6 15 17 syl3anc x2x+1=221=2x
19 2m1e1 21=1
20 19 a1i x21=1
21 20 eqeq1d x21=2x1=2x
22 14 18 21 3bitrd x2=2x+11=2x
23 12 22 mtbird x¬2=2x+1
24 23 nrex ¬x2=2x+1
25 24 intnan ¬2x2=2x+1
26 eqeq1 z=2z=2x+12=2x+1
27 26 rexbidv z=2xz=2x+1x2=2x+1
28 27 1 elrab2 2O2x2=2x+1
29 25 28 mtbir ¬2O
30 29 nelir 2O