Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oddinmgm.e | |
|
Assertion | 2nodd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddinmgm.e | |
|
2 | halfnz | |
|
3 | eleq1 | |
|
4 | 2 3 | mtbii | |
5 | 4 | con2i | |
6 | 1cnd | |
|
7 | zcn | |
|
8 | 2cnd | |
|
9 | 2ne0 | |
|
10 | 9 | a1i | |
11 | 6 7 8 10 | divmul2d | |
12 | 5 11 | mtbid | |
13 | eqcom | |
|
14 | 13 | a1i | |
15 | 8 7 | mulcld | |
16 | subadd2 | |
|
17 | 16 | bicomd | |
18 | 8 6 15 17 | syl3anc | |
19 | 2m1e1 | |
|
20 | 19 | a1i | |
21 | 20 | eqeq1d | |
22 | 14 18 21 | 3bitrd | |
23 | 12 22 | mtbird | |
24 | 23 | nrex | |
25 | 24 | intnan | |
26 | eqeq1 | |
|
27 | 26 | rexbidv | |
28 | 27 1 | elrab2 | |
29 | 25 28 | mtbir | |
30 | 29 | nelir | |